cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 82 results. Next

A325320 Sum of proper divisors of A228058(n) that are not squarefree; a(n) = -A325314(A228058(n)).

Original entry on oeis.org

9, 9, 9, 49, 9, 25, 9, 9, 297, 25, 9, 9, 121, 49, 9, 25, 9, 49, 169, 9, 9, 25, 9, 9, 25, 585, 9, 25, 9, 729, 9, 49, 289, 25, 9, 121, 9, 9, 9, 361, 49, 25, 49, 121, 9, 9, 9, 2049, 25, 9, 1161, 9, 25, 9, 25, 9, 49, 9, 529, 25, 9, 25, 9, 169, 2381, 49, 1449, 9, 9, 9, 1593, 9, 25, 9, 121, 9, 49, 9, 2889, 9, 25, 289, 9, 2997, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

All terms are of the form 4k+1, A016813.
If a(n) is never equal to A325319(n), then there are no odd perfect numbers.

Crossrefs

Programs

  • PARI
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(-A325314(n), ", ")));

Formula

a(n) = -A325314(A228058(n)) = A162296(A228058(n)) - A228058(n).
a(n) = A325319(n) - A325379(n) = A325378(n) - A325319(n).
a(n) < A001065(A228058(n)) for all n.

A325379 a(n) = A033879(A228058(n)).

Original entry on oeis.org

12, 52, 72, 148, 132, 216, 172, 192, 84, 292, 252, 292, 412, 476, 352, 520, 432, 640, 592, 472, 492, 672, 532, 552, 748, 412, 672, 976, 732, 576, 772, 1132, 1048, 1128, 852, 1284, 892, 952, 972, 1324, 1460, 1356, 1624, 1720, 1132, 1152, 1192, -36, 1660, 1272, 1068, 1332, 1812, 1372, 1888, 1392, 2116, 1452, 1972, 2040, 1552, 2116
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

The negative terms -36, -1692, -2388, -34944, -16596, -38628, -512, ..., occur at n = 48, 378, 1744, 2255, 2745, 2870, 3555, ..., where A228058(n) is 2205, 19845, 108045, 143325, 178605, 187425, 236925, ..., one of the odd abundant numbers, A005231.

Crossrefs

Programs

  • PARI
    A033879(n) = (n+n-sigma(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A033879(n), ", ")));

Formula

a(n) = A033879(A228058(n)).
a(n) = A325319(n) - A325320(n).
A001511(abs(a(n))) = A325310(A228058(n)), assuming there are no odd perfect numbers, in which case A001511(abs(a(n))) >= 3 for all n. That is, all terms are multiples of 4.

A325319 a(n) = -A325313(A228058(n)).

Original entry on oeis.org

21, 61, 81, 197, 141, 241, 181, 201, 381, 317, 261, 301, 533, 525, 361, 545, 441, 689, 761, 481, 501, 697, 541, 561, 773, 997, 681, 1001, 741, 1305, 781, 1181, 1337, 1153, 861, 1405, 901, 961, 981, 1685, 1509, 1381, 1673, 1841, 1141, 1161, 1201, 2013, 1685, 1281, 2229, 1341, 1837, 1381, 1913, 1401, 2165, 1461, 2501, 2065, 1561, 2141
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

All terms are of the form 4k+1, A016813.
If a(n) is never equal to A325320(n), then there are no odd perfect numbers.

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(-A325313(n), ", ")));

Formula

a(n) = -A325313(A228058(n)) = A228058(n) - A048250(A228058(n)).
a(n) = A325320(n) + A325379(n) = A325378(n) - A325320(n).

A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)).

Original entry on oeis.org

30, 70, 90, 246, 150, 266, 190, 210, 678, 342, 270, 310, 654, 574, 370, 570, 450, 738, 930, 490, 510, 722, 550, 570, 798, 1582, 690, 1026, 750, 2034, 790, 1230, 1626, 1178, 870, 1526, 910, 970, 990, 2046, 1558, 1406, 1722, 1962, 1150, 1170, 1210, 4062, 1710, 1290, 3390, 1350, 1862, 1390, 1938, 1410, 2214, 1470, 3030
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A162296(n) - A048250(n),", ")));

Formula

a(n) = A162296(A228058(n)) - A048250(A228058(n)).
a(n) = A325319(n) + A325320(n).

A325824 a(n) = A325814(A228058(n)).

Original entry on oeis.org

27, 75, 99, 203, 171, 255, 219, 243, 171, 335, 315, 363, 539, 539, 435, 575, 531, 707, 767, 579, 603, 735, 651, 675, 815, 507, 819, 1055, 891, 675, 939, 1211, 1343, 1215, 1035, 1419, 1083, 1155, 1179, 1691, 1547, 1455, 1715, 1859, 1371, 1395, 1443, 759, 1775, 1539, 1179, 1611, 1935, 1659, 2015, 1683, 2219, 1755, 2507, 2175, 1875, 2255
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

First negative term occurs as a(16307) = -210973, with A228058(16307) = 1289925. The next negative terms occurs as a(20807) = -242901, with A228058(20807) = 1686825.

Crossrefs

Programs

  • PARI
    up_to = 10000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, May 23 2019
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A048146(n) = (sigma(n)-A034448(n));
    A325814(n) = (n-A048146(n));
    A325824(n) = A325814(A228058(n));

Formula

a(n) = A325814(A228058(n)).
a(n) = A325379(n) + A325823(n).

A326137 Numbers with at least five distinct prime factors that satisfy Euler's criterion (A228058) for odd perfect numbers.

Original entry on oeis.org

17342325, 22678425, 31674825, 38686725, 41420925, 45090045, 49358925, 51740325, 54033525, 54695025, 67660425, 68939325, 70703325, 75818925, 76392225, 77106645, 78217425, 81375525, 92400525, 96316605, 97383825, 98750925, 99147825, 102284325, 107694405, 113656725, 115420725, 117890325, 118728225, 120536325, 127766925
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2019

Keywords

Comments

P. P. Nielsen's 2006 paper shows that any odd perfect number must have at least nine distinct prime factors, thus if such numbers exist at all, they must occur in this sequence.
I conjecture that it is eventually possible to find an easy proof that this sequence has no common terms with A325981, and/or several other sequences (A326064, A326074, A326141, A326148, etc.) listed under index entry "sequences where odd perfect numbers must occur", thus settling the question about the existence of such numbers.

Crossrefs

Programs

  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    isA326137(n) = ((omega(n)>=5)&&isA228058(n));

A349755 Numbers k for which the 3-adic valuations of k and sigma(k) are equal, and that also satisfy Euler's criterion for odd perfect numbers (see A228058).

Original entry on oeis.org

153, 325, 801, 925, 1525, 1573, 1773, 1825, 2097, 2205, 2425, 2725, 3757, 3825, 3925, 4041, 4477, 4525, 4689, 4825, 5013, 5725, 6025, 6877, 6925, 6957, 7381, 7605, 7825, 7929, 8125, 8425, 8577, 8725, 8833, 9325, 9549, 9873, 9925, 10225, 10525, 10693, 10825, 10933, 11425, 11493, 11737, 12789, 13189, 13437, 13525
Offset: 1

Views

Author

Antti Karttunen, Dec 02 2021

Keywords

Comments

Obviously, all odd perfect numbers x, if such numbers exist at all, have to satisfy not only the famous condition given by Euler (see A228058), but also valuation(sigma(x), p) = valuation(x, p) for all odd primes p = 3, 5, 7, 11, etc. See also comments in A349752.
a(109), a(283), a(440) = 31213, 88837, 146461, are the first terms not occurring in A387162. - Antti Karttunen, Aug 27 2025

Crossrefs

Intersection of A228058 and A349749.
Cf. A387162 (subsequence).

Programs

  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA349755(n) = (isA228058(n)&&valuation(sigma(n), 3)==valuation(n, 3));

A354362 Intersection of A228058 and A260021.

Original entry on oeis.org

45, 49005, 597861, 715473, 1538757, 1891593, 1893213, 2714877, 3067713, 3890997, 4126221, 4479057, 5302341, 5465313, 5793525, 5890437, 6008013, 6478461, 6596073, 6882525, 7184133, 7419357, 8595477, 9771597, 10712493, 11300553, 11771001, 11888613, 12123837, 12947121, 13535181, 14240853, 15887421, 16240257, 17181153
Offset: 1

Views

Author

Antti Karttunen, May 24 2022

Keywords

Crossrefs

Subsequence of A353679.
Cf. also A354106.

Programs

A386429 Odd composites k such that A342926(k) is even and A342926(2*k) is a multiple of 3 and which satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

45, 153, 261, 325, 369, 405, 477, 801, 909, 925, 1017, 1233, 1341, 1377, 1525, 1557, 1573, 1773, 1825, 2097, 2205, 2313, 2349, 2421, 2425, 2529, 2637, 2725, 2853, 3177, 3321, 3501, 3609, 3645, 3757, 3825, 3925, 4041, 4149, 4293, 4477, 4525, 4581, 4689, 4825, 5013, 5121, 5337, 5445, 5553, 5725, 5733, 5769, 5877, 6025
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2025

Keywords

Comments

Sequence contains also some terms of A386428: 28125, 253125, 1378125, 2278125, 3341637, 3403125, 4753125, etc.

Crossrefs

Intersection of A228058 and A347874.
Conjectured to be also the intersection of A228058 and A349751.
Setwise difference A228058 \ A351574.
Cf. also A349755, A387162.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342926(n) = (A003415(sigma(n))-n);
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));
    isA386429(n) = (isA228058(n) && isA347874(n));

A325376 Terms k of A228058 such that gcd(k - A048250(k), A162296(k) - k) = A162296(k) - k.

Original entry on oeis.org

153, 477, 801, 1773, 2097, 2421, 3725, 4041, 4689, 4753, 5013, 5337, 6309, 6957, 7281, 7929, 8577, 8725, 9549, 9873, 11225, 11493, 13437, 14357, 14409, 14733, 15381, 17001, 17973, 18621, 19269, 19917, 21213, 21537, 23481, 24777, 25101, 25749, 26073, 26225, 26721, 27369, 28989, 29161, 29313, 29961, 31225, 32229, 32553, 33849
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

Also, terms of this sequence are A228058(k) for all such k that A325375(k) = A325320(k).
In range 1 .. 2^27 there are no such terms k of A228058 that gcd(k-A048250(k), A162296(k)-k) = k - A048250(k).
If any odd perfect number exists, then it must occur in this sequence, but should also satisfy the other condition given above.

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n) && (gcd(n-A048250(n),A162296(n)-n) == A162296(n)-n),k++; print1(n,", ")));
Showing 1-10 of 82 results. Next