cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A354106 Numbers k for which A354102(k) = A354102(sigma(k)).

Original entry on oeis.org

1, 24, 2475, 2520, 2728, 5347, 6683, 8184, 8307, 8568, 9108, 9306, 10106, 11484, 12974, 16041, 17892, 20049, 23265, 25265, 26199, 30318, 32256, 32435, 38922, 39618, 40918, 44010, 44576, 44872, 50976, 55224, 55720, 56516, 58817, 63720, 63952, 64890, 65689, 66528, 67356, 69860, 72072, 73409, 74448, 75795, 79101, 83160
Offset: 1

Views

Author

Antti Karttunen, May 18 2022

Keywords

Comments

No common terms with A006872 in range a(2) .. a(1001).
Among the 1001 initial terms, only 3119744 and 13890816 occur also in A191217.

Crossrefs

Programs

A260021 Solutions to phi(n) = phi(sigma(n)) that are not given by Theorem 3 of Golomb's manuscript.

Original entry on oeis.org

1, 3, 15, 45, 175, 357, 585, 608, 646, 962, 1071, 1292, 1443, 1508, 1586, 1664, 1665, 1898, 2275, 2295, 2379, 2745, 2847, 3285, 3848, 4082, 4329, 4514, 4641, 4736, 4845, 5018, 5402, 6123, 6232, 6344, 6475, 6771, 7052, 7065, 7137, 7202, 7215, 7527, 7592, 7803, 7808, 8103, 8138, 8398, 8541, 8685, 8906, 9344, 9526, 10322
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Manuscript, no date; Second update, Dec 29, 1992.

Crossrefs

Setwise difference A006872 \ A354345. Subset of positions of zeros in A353636.
Cf. A354362 (subsequence).
Cf. also A005383, A353637, A354344.

Programs

  • PARI
    A354344(n) = { if(!(n%15),n/=15,if(!(n%9),n/=9,if(!(n%8),n/=8,if(!(n%3),n/=3,if(!(n%2),n/=2,return(0)))))); ((n>5) && isprime(n) && isprime((1+n)/2)); };
    A353637(n) = (eulerphi(sigma(n))==eulerphi(n));
    isA260021(n) = (A353637(n) && !A354344(n)); \\ Antti Karttunen, May 24 2022

Formula

{k | 1==A353637(k) and 0==A354344(k)}. - Antti Karttunen, May 25 2022

Extensions

Term a(1) = 1 prepended and terms a(14) .. a(56) added by Antti Karttunen, May 24 2022

A386419 Odd numbers k that are closer to being perfect than previous terms, and also satisfy the condition that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 45, 585, 2295, 11475, 29835, 72675, 424575, 7977165, 28851975, 29277885, 39317175
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2025

Keywords

Comments

Questions: Is 45 the only term also in A228058? (See also A354362). Are there only multiples of 5 after the two initial terms?
If it exists, a(15) > 2^30 (1073741824).

Crossrefs

Programs

  • PARI
    A353680(n) = ((n%2) && (eulerphi(sigma(n))==eulerphi(n)));
    isA353679(n) = A353680(n);
    m=-1; n=0; k=0; while(m!=0, n++; if(!(n%(2^25)),print1("("n")")); if(isA353679(n), if((m<0) || abs((sigma(n)/n)-2)
    				
Showing 1-4 of 4 results.