cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A325375 a(n) = gcd(A325319(n), A325320(n)).

Original entry on oeis.org

3, 1, 9, 1, 3, 1, 1, 3, 3, 1, 9, 1, 1, 7, 1, 5, 9, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 9, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 9, 1, 3, 5, 3, 3, 9, 1, 1, 1, 3, 1, 3, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 3, 3, 1, 25, 1, 1, 9, 1, 1, 9, 1, 3, 1, 27, 1, 1, 1, 1, 3, 9, 1, 49, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A325319(n), A325320(n)).

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A325313 a(n) = A048250(n) - n, where A048250(n) is the sum of squarefree divisors of n.

Original entry on oeis.org

0, 1, 1, -1, 1, 6, 1, -5, -5, 8, 1, 0, 1, 10, 9, -13, 1, -6, 1, -2, 11, 14, 1, -12, -19, 16, -23, -4, 1, 42, 1, -29, 15, 20, 13, -24, 1, 22, 17, -22, 1, 54, 1, -8, -21, 26, 1, -36, -41, -32, 21, -10, 1, -42, 17, -32, 23, 32, 1, 12, 1, 34, -31, -61, 19, 78, 1, -14, 27, 74, 1, -60, 1, 40, -51, -16, 19, 90, 1, -62, -77, 44, 1, 12, 23, 46
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A048250(n) - n.
a(n) = A325314(n) - A033879(n).
a(A228058(n)) = -A325319(n).

A325320 Sum of proper divisors of A228058(n) that are not squarefree; a(n) = -A325314(A228058(n)).

Original entry on oeis.org

9, 9, 9, 49, 9, 25, 9, 9, 297, 25, 9, 9, 121, 49, 9, 25, 9, 49, 169, 9, 9, 25, 9, 9, 25, 585, 9, 25, 9, 729, 9, 49, 289, 25, 9, 121, 9, 9, 9, 361, 49, 25, 49, 121, 9, 9, 9, 2049, 25, 9, 1161, 9, 25, 9, 25, 9, 49, 9, 529, 25, 9, 25, 9, 169, 2381, 49, 1449, 9, 9, 9, 1593, 9, 25, 9, 121, 9, 49, 9, 2889, 9, 25, 289, 9, 2997, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

All terms are of the form 4k+1, A016813.
If a(n) is never equal to A325319(n), then there are no odd perfect numbers.

Crossrefs

Programs

  • PARI
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(-A325314(n), ", ")));

Formula

a(n) = -A325314(A228058(n)) = A162296(A228058(n)) - A228058(n).
a(n) = A325319(n) - A325379(n) = A325378(n) - A325319(n).
a(n) < A001065(A228058(n)) for all n.

A325379 a(n) = A033879(A228058(n)).

Original entry on oeis.org

12, 52, 72, 148, 132, 216, 172, 192, 84, 292, 252, 292, 412, 476, 352, 520, 432, 640, 592, 472, 492, 672, 532, 552, 748, 412, 672, 976, 732, 576, 772, 1132, 1048, 1128, 852, 1284, 892, 952, 972, 1324, 1460, 1356, 1624, 1720, 1132, 1152, 1192, -36, 1660, 1272, 1068, 1332, 1812, 1372, 1888, 1392, 2116, 1452, 1972, 2040, 1552, 2116
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

The negative terms -36, -1692, -2388, -34944, -16596, -38628, -512, ..., occur at n = 48, 378, 1744, 2255, 2745, 2870, 3555, ..., where A228058(n) is 2205, 19845, 108045, 143325, 178605, 187425, 236925, ..., one of the odd abundant numbers, A005231.

Crossrefs

Programs

  • PARI
    A033879(n) = (n+n-sigma(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A033879(n), ", ")));

Formula

a(n) = A033879(A228058(n)).
a(n) = A325319(n) - A325320(n).
A001511(abs(a(n))) = A325310(A228058(n)), assuming there are no odd perfect numbers, in which case A001511(abs(a(n))) >= 3 for all n. That is, all terms are multiples of 4.

A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)).

Original entry on oeis.org

30, 70, 90, 246, 150, 266, 190, 210, 678, 342, 270, 310, 654, 574, 370, 570, 450, 738, 930, 490, 510, 722, 550, 570, 798, 1582, 690, 1026, 750, 2034, 790, 1230, 1626, 1178, 870, 1526, 910, 970, 990, 2046, 1558, 1406, 1722, 1962, 1150, 1170, 1210, 4062, 1710, 1290, 3390, 1350, 1862, 1390, 1938, 1410, 2214, 1470, 3030
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A162296(n) - A048250(n),", ")));

Formula

a(n) = A162296(A228058(n)) - A048250(A228058(n)).
a(n) = A325319(n) + A325320(n).

A325823 Sum of unitary proper divisors of A228058(n): a(n) = A034460(A228058(n)).

Original entry on oeis.org

15, 23, 27, 55, 39, 39, 47, 51, 87, 43, 63, 71, 127, 63, 83, 55, 99, 67, 175, 107, 111, 63, 119, 123, 67, 95, 147, 79, 159, 99, 167, 79, 295, 87, 183, 135, 191, 203, 207, 367, 87, 99, 91, 139, 239, 243, 251, 795, 115, 267, 111, 279, 123, 287, 127, 291, 103, 303, 535, 135, 323, 139, 327, 187, 715, 111, 119, 347, 359, 363, 123, 383
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 10000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, May 23 2019
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A034460(n) = (A034448(n) - n);
    A325823(n) = A034460(A228058(n));

Formula

a(n) = A034460(A228058(n)).
a(n) = A325824(n) - A325379(n).
Showing 1-7 of 7 results.