A228074 A Fibonacci-Pascal triangle read by rows: T(n,0) = Fibonacci(n), T(n,n) = n and for n > 0: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n.
0, 1, 1, 1, 2, 2, 2, 3, 4, 3, 3, 5, 7, 7, 4, 5, 8, 12, 14, 11, 5, 8, 13, 20, 26, 25, 16, 6, 13, 21, 33, 46, 51, 41, 22, 7, 21, 34, 54, 79, 97, 92, 63, 29, 8, 34, 55, 88, 133, 176, 189, 155, 92, 37, 9, 55, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10
Offset: 0
Examples
. 0: 0 . 1: 1 1 . 2: 1 2 2 . 3: 2 3 4 3 . 4: 3 5 7 7 4 . 5: 5 8 12 14 11 5 . 6: 8 13 20 26 25 16 6 . 7: 13 21 33 46 51 41 22 7 . 8: 21 34 54 79 97 92 63 29 8 . 9: 34 55 88 133 176 189 155 92 37 9 . 10: 55 89 143 221 309 365 344 247 129 46 10 . 11: 89 144 232 364 530 674 709 591 376 175 56 11 . 12: 144 233 376 596 894 1204 1383 1300 967 551 231 67 12 .
Links
Crossrefs
Programs
-
GAP
T:= function(n,k) if k=0 then return Fibonacci(n); elif k=n then return n; else return T(n-1,k-1) + T(n-1,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 05 2019
-
Haskell
a228074 n k = a228074_tabl !! n !! k a228074_row n = a228074_tabl !! n a228074_tabl = map fst $ iterate (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [1]))) ([0], [1,1])
-
Maple
with(combinat); T:= proc (n, k) option remember; if k = 0 then fibonacci(n) elif k = n then n else T(n-1, k-1) + T(n-1, k) end if end proc; seq(seq(T(n, k), k = 0..n), n = 0..12); # G. C. Greubel, Sep 05 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, Fibonacci[n], If[k==n, n, T[n-1, k-1] + T[n -1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Sep 05 2019 *)
-
PARI
T(n,k) = if(k==0, fibonacci(n), if(k==n, n, T(n-1, k-1) + T(n-1, k))); for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
-
Sage
def T(n, k): if (k==0): return fibonacci(n) elif (k==n): return n else: return T(n-1, k) + T(n-1, k-1) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 05 2019
Comments