A272039 a(n) = 10*n^2 + 4*n + 1.
1, 15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809, 18663, 19537
Offset: 0
Links
- M. Beck, J. A. De Loera, M. Develin, J. Pfeifle and R. P. Stanley, Coefficients and roots of Ehrhart Polynomials, page 19.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[10*n^2+4*n+1: n in [0..50]];
-
Mathematica
Table[10 n^2 + 4 n + 1, {n, 0, 50}] LinearRecurrence[{3,-3,1},{1,15,49},50] (* Harvey P. Dale, Dec 26 2021 *)
-
PARI
a(n)=10*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
O.g.f.: (1 + 12*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 14*x + 10*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A168668(n) + 1.
Extensions
Edited by Bruno Berselli, Apr 22 2016
Comments