cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228219 Number of second differences of arrays of length 4 of numbers in 0..n.

Original entry on oeis.org

15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809
Offset: 1

Views

Author

R. H. Hardin, Aug 16 2013

Keywords

Comments

Row 2 of A228218.

Examples

			Some solutions for n=4:
..1....1....1....5....6....1....2...-5....8....4...-5....8....1....5...-7....0
..4....2...-3....1...-6....1....1...-1...-7....1....0...-4....5...-7....6....6
		

Crossrefs

Formula

Empirical: a(n) = 10*n^2 + 4*n + 1 = A272039(n).
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(15 + 4*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)

A272124 a(n) = 12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 43, 369, 1507, 4273, 9771, 19393, 34819, 58017, 91243, 137041, 198243, 277969, 379627, 506913, 663811, 854593, 1083819, 1356337, 1677283, 2052081, 2486443, 2986369, 3558147, 4208353, 4943851, 5771793, 6699619, 7735057, 8886123, 10161121, 11568643
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2016

Keywords

Crossrefs

Programs

  • Magma
    [12*n^4+16*n^3+10*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A272124:=n->(12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1): seq(A272124(n), n=0..60); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 43, 369, 1507, 4273}, 50]
    CoefficientList[Series[(1 + 38*x + 164*x^2 + 82*x^3 + 3*x^4)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
  • PARI
    vector(100, n, n--; 12*n^4+16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016

Formula

O.g.f.: (1+38*x+164*x^2+82*x^3+3*x^4)/(1-x)^5.
E.g.f.: (1+42*x+142*x^2+88*x^3+12*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) mod 4 = a(n) mod 8 = A010684(n). - Wesley Ivan Hurt, Apr 22 2016

A272130 a(n) = 16*n^3 + 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 31, 177, 535, 1201, 2271, 3841, 6007, 8865, 12511, 17041, 22551, 29137, 36895, 45921, 56311, 68161, 81567, 96625, 113431, 132081, 152671, 175297, 200055, 227041, 256351, 288081, 322327, 359185, 398751, 441121, 486391, 534657, 586015, 640561, 698391
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2016

Keywords

Crossrefs

Programs

  • Magma
    [16*n^3+10*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A272130:=n->16*n^3+10*n^2+4*n+1: seq(A272130(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,31,177,535},50]
    CoefficientList[Series[(1 + 27*x + 59*x^2 + 9*x^3)/(1 - x)^4, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
  • PARI
    vector(100, n, n--; 16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016

Formula

O.g.f.: (1+27*x+59*x^2+9*x^3)/(1-x)^4.
E.g.f.: (1+30*x+58*x^2+16*x^3)*exp(x).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
a(n) = A158187(n) + A144965(n).

A338369 Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 17, 13, 1, 1, 15, 31, 34, 21, 1, 1, 21, 49, 64, 57, 31, 1, 1, 28, 71, 103, 109, 86, 43, 1, 1, 36, 97, 151, 177, 166, 121, 57, 1, 1, 45, 127, 208, 261, 271, 235, 162, 73, 1, 1, 55, 161, 274, 361, 401, 385, 316, 209, 91, 1, 1, 66, 199, 349, 477, 556, 571, 519, 409, 262, 111, 1
Offset: 0

Views

Author

Werner Schulte, Nov 26 2020

Keywords

Comments

Seen as a square array: (1) A(n,k) = T(n+k,k) = (k^2*n^2+k*(k+2)*n+2)/2 for n,k >= 0; (2) A(n,k) = A(n-1,k) + k*(1 + k*n) for k >= 0 and n > 0; (3) A(n,k) = A(n,k-1) + k*n*(n+1) - n*(n-1)/2 for n >= 0 and k > 0; (4) G.f. of row n >= 0: (2 + (n^2+3*n-4)*x + (n^2-n+2)*x^2) / (2*(1-x)^3).

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n \k :  0   1    2    3    4    5    6    7    8    9   10   11   12
====================================================================
   0 :  1
   1 :  1   1
   2 :  1   3    1
   3 :  1   6    7    1
   4 :  1  10   17   13    1
   5 :  1  15   31   34   21    1
   6 :  1  21   49   64   57   31    1
   7 :  1  28   71  103  109   86   43    1
   8 :  1  36   97  151  177  166  121   57    1
   9 :  1  45  127  208  261  271  235  162   73    1
  10 :  1  55  161  274  361  401  385  316  209   91    1
  11 :  1  66  199  349  477  556  571  519  409  262  111    1
  12 :  1  78  241  433  609  736  793  771  673  514  321  133    1
etc.
		

Crossrefs

Cf. A000012 (column 0, main diagonal), A000217 (column 1), A056220 (column 2), A081271 (column 3), A118057 (column 4), A002061 (1st subdiagonal), A056109 (2nd subdiagonal), A085473 (3rd subdiagonal), A272039 (4th subdiagonal).

Programs

  • Mathematica
    T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    for(n=0,12,for(k=0,n,print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2,", "));print(" "))

Formula

T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
T(n,0) = T(n,n) = 1 for n >= 0.
T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - Stefano Spezia, Nov 27 2020
Showing 1-4 of 4 results.