cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A242527 Number of cyclic arrangements (up to direction) of {0,1,...,n-1} such that the sum of any two neighbors is a prime.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 6, 6, 22, 80, 504, 840, 6048, 3888, 37524, 72976, 961776, 661016, 11533030, 7544366, 133552142, 208815294, 5469236592, 6429567323, 153819905698, 182409170334, 4874589558919, 7508950009102, 209534365631599
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S={0,1,...,n-1} of n elements and a specific pair-property P. For more details, see the link and A242519.
For the same pair-property P but the set {1 through n}, see A051252. Using for pair-property the difference, rather than the sum, one obtains A228626.

Examples

			The first such cycle is of length n=5: {0,2,1,4,3}.
The first case with 2 solutions is for cycle length n=7:
C_1={0,2,3,4,1,6,5}, C_2={0,2,5,6,1,4,3}.
The first and the last of the 22 such cycles of length n=10 are:
C_1={0,3,2,1,4,9,8,5,6,7}, C_22={0,5,8,9,4,3,2,1,6,7}.
		

Crossrefs

Programs

  • Mathematica
    A242527[n_] := Count[Map[lpf, Map[j0f, Permutations[Range[n - 1]]]], 0]/2;
    j0f[x_] := Join[{0}, x, {0}];
    lpf[x_] := Length[Select[asf[x], ! PrimeQ[#] &]];
    asf[x_] := Module[{i}, Table[x[[i]] + x[[i + 1]], {i, Length[x] - 1}]];
    Table[A242527[n], {n, 1, 10}]
    (* OR, a less simple, but more efficient implementation. *)
    A242527[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[PrimeQ[First[perm] + Last[perm]], ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[! PrimeQ[Last[perm] + new], Continue[]];
          A242527[n, Join[perm, {new}],
           Complement[Range[n - 1], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Table[ct = 0; A242527[n, {0}, Range[n - 1]]/2, {n, 1, 15}]
    (* Robert Price, Oct 18 2018 *)

Extensions

a(23)-a(30) from Max Alekseyev, Jul 09 2014

A185645 Number of permutations q_1,...,q_n of the first n primes p_1,...,p_n with q_1 = p_1 = 2 and q_n = p_n, and with |q_1-q_2|, |q_2-q_3|, ..., |q_{n-1}-q_n|, and |q_n-q_1| (if n>2) pairwise distinct.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 10, 33, 153, 1060, 7337, 51434, 440728, 3587067, 28498105, 271208386, 3014400869, 35358507494
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 29 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In general, for any n consecutive primes p_k,...,p_{k+n-1}, there always exists a permutation q_k,...,q_{k+n-1} of p_k,...,p_{k+n-1} with q_{k+n-1} = p_{k+n-1} such that the n-1 numbers |q_k-q_{k+1}|, |q_{k+1}-q_{k+2}|,...,|q_{k+n-2}-q_{k+n-1}| are pairwise distinct. (In the case k = 2, this implies that a(n) > 0.)
Clearly there is no permutation a,b,c of 3,5,7 such that the three numbers |a-b|,|b-c|,|c-a| are pairwise distinct. Also, for {a,b} = {7,11}, the three numbers |5-a|,|a-b|,|b-13| cannot be pairwise distinct.
On Aug 31 2013, Zhi-Wei Sun proved the following extension of the general conjecture: Let a_1 < a_2 < ... < a_n be a sequence of n distinct real numbers in ascending order. Then there is a permutation b_1, ..., b_n of a_1, ..., a_n with b_n = a_n such that |b_1-b_2|, |b_2-b_3|, ..., |b_{n-1}-b_n| are pairwise distinct. In fact, when n = 2*k is even we may take (b_1,...,b_n) = (a_k,a_{k+1},a_{k-1},a_{k+2},...,a_2,a_{2k-1},a_1,a_{2k}); when n = 2*k-1 is odd we may take (b_1,...,b_n) = (a_k,a_{k-1},a_{k+1},a_{k-2},a_{k+2},..., a_2,a_{2k-2},a_1,a_{2k-1}).
On Sep 01 2013, Zhi-Wei Sun made the following conjecture: (i) For any n distinct real numbers a_1, a_2, ..., a_n (not necessarily in ascending or descending order), there is a permutation b_1, ..., b_n of a_1, ..., a_n with b_1 = a_1 such that the n-1 distances |b_1-b_2|, |b_2-b_3|, ..., |b_{n-1}-b_n| are pairwise distinct.
(ii) Let a_1, ..., a_n be n distinct elements of a finite additive abelian group G. Suppose that |G| is not divisible by n, or n is even and G is cyclic. Then there exists a permutation b_1, ..., b_n of a_1, ..., a_n with b_1 = a_1 such that the n-1 differences b_{i+1}-b_i (i = 1, ..., n-1) are pairwise distinct.
We believe that part (ii) of the new conjecture holds at least when G is cyclic, and it might also hold when the group G is not abelian.
Note that if g is a primitive root modulo an odd prime p, then for any j = 0,...,p-2 the permutation g^j, g^{j+1},...,g^{j+p-2} of the p-1 nonzero residues modulo p has adjacent differences g^{i+j+1}-g^{i+j} = g^{i+j}*(g-1) (i = 0, ..., p-3) which are pairwise distinct modulo p.

Examples

			a(4) = 1 since (q_1,q_2,q_3,q_4) = (2,5,3,7) is the only suitable permutation.
a(5) = 3 since there are exactly three suitable permutations(q_1,q_2,q_3,q_4,q_5): (2,3,7,5,11), (2,5,7,3,11) and (2,7,3,5,11).
a(6) = 5 since there are exactly five suitable permutations (q_1,q_2,q_3,q_4,q_5,q_6): (2,5,3,11,7,13), (2,5,7,11,3,13), (2,7,5,11,3,13), (2,7,11,5,3,13), (2,11,5,7,3,13).
a(7) = 10, and the ten suitable permutations (q_1,...,q_7) are as follows:
  (2,3,13,5,7,11,17), (2,7,3,13,11,5,17), (2,7,5,11,3,13,17),
  (2,7,11,5,13,3,17), (2,11,3,13,7,5,17), (2,11,7,5,13,3,17),
  (2,11,7,13,3,5,17), (2,11,7,13,5,3,17), (2,13,3,11,7,5,17),
  (2,13,7,11,3,5,17).
		

Crossrefs

Programs

  • Mathematica
    A185645[n_] := Module[{p, c = 0, i = 1, j, q},
       If[n == 2, Return[1],
       p = Permutations[Table[Prime[j], {j, 2, n - 1}]];
       While[i <= Length[p],
        q = Join[{2}, p[[i]], {Prime[n]}]; i++;
        If[Length[Union[Join[Table[Abs[q[[j]] - q[[j + 1]]], {j, 1, n - 1}], {Abs[q[[n]] - q[[1]]]}]]] == n, c++]]; c]];
    Table[A185645[n], {n, 1, 11}]  (* Robert Price, Apr 04 2019 *)

Extensions

Name clarified by Robert Price, Apr 04 2019
a(12)-a(18) from Bert Dobbelaere, Sep 08 2019

A227050 Number of essentially different ways of arranging numbers 1 through 2n around a circle so that the sum and absolute difference of each pair of adjacent numbers are prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 4, 88, 0, 976, 22277, 22365, 376002, 3172018, 5821944, 10222624, 424452210, 6129894510, 38164752224
Offset: 1

Views

Author

Tim Cieplowski, Jun 29 2013

Keywords

Comments

See a similar problem, but for the set of numbers {0 through (n-1)}. - Stanislav Sykora, May 30 2014

Examples

			For n = 6 the a(6) = 2 solutions are (1, 4, 9, 2, 5, 12, 7, 10, 3, 8, 11, 6) and (1, 6, 11, 8, 3, 10, 7, 4, 9, 2, 5, 12) because abs(1 - 4) = 3 and 1 + 4 = 5 are prime, etc.
		

Crossrefs

Cf. similar sequences: A051252 (with sums of neighbors prime), A242527 (with sums of neighbors prime), A228626 (with differences of neighbors prime), A242528 (with sums and differences of neighbors prime).

Programs

  • Mathematica
    A227050[n_] :=
    Count[Map[lpf, Map[j1f, Permutations[Range[2,2 n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[
       Join[Select[asf[x], ! PrimeQ[#] &],
        Select[Differences[x], ! PrimeQ[#] &]]];
    asf[x_] := Module[{i}, Table[x[[i]] + x[[i + 1]], {i, Length[x] - 1}]];
    Table[A227050[n], {n, 1, 6}]
    (* OR, a less simple, but more efficient implementation. *)
    A227050[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[PrimeQ[First[perm] - Last[perm]] &&
           PrimeQ[First[perm] + Last[perm]], ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[! (PrimeQ[Last[perm] - new] && PrimeQ[Last[perm] + new]),
           Continue[]];
          A227050[n, Join[perm, {new}],
           Complement[Range[2 n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Table[ct = 0; A227050[n, {1}, Range[2, 2 n]]/2, {n, 1, 10}]
    (* Robert Price, Oct 22 2018 *)

Extensions

a(15)-a(18) added by Tim Cieplowski, Jan 04 2015
a(19) from Fausto A. C. Cariboni, Jun 06 2017
a(20) from Bert Dobbelaere, Feb 15 2020

A228860 Number of permutations i_1,...,i_n of 1,...,n with i_1 = 1 and i_n = n, and with the n adjacent sums i_1+i_2, i_2+i_3, ..., i_{n-1}+i_n, i_n+i_1 all coprime to n.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 40, 36, 144, 78, 126336, 176, 14035200, 69480, 779436, 25401600, 465334732800, 1700352, 127064889262080, 1888106496, 1479065243520, 1774752094080, 18353630943019008000, 144127475712, 116009818818379776000, 30959322906758400, 373881853408444416000
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 05 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 3.
If n is a power of two, then a(n) > 0 since the identical permutation 1,2,3,...,n meets the requirement. For any prime p > 3, we have a(p) > 0 since the permutation 1,...,(p-1)/2, (p+3)/2,(p+1)/2,(p+5)/2,...,p meets our purpose.
Let G(n) be the undirected simple graph with vertices 1,...,n which has an edge connecting two distinct vertices i and j if and only if i + j is relatively prime to n. Then, for any n > 2, the number a(n) is just the number of those Hamiltonian cycles in G(n) on which the vertices 1 and n are adjacent.
Let m be any integer relatively prime to n, and let i_k be the smallest positive residue of k*m modulo n. Then i_1, i_2, ..., i_n is a permutation of 1, ..., n with the n adjacent differences i_1-i_2, i_2-i_3, ..., i_{n-1}-i_n, i_n-i_1 all coprime to n.
On Sep 06 2013, the author's two former PhD students Hui-Qin Cao (from Nanjing Audit Univ.) and Hao Pan (from Nanjing Univ.) proved the conjecture fully.

Examples

			a(4) = 1 due to the permutation 1,2,3,4.
a(5) = 2 due to the permutations 1,2,4,3,5 and 1,3,4,2,5.
a(6) = 1 due to the permutation 1,4,3,2,5,6.
a(7) > 0 due to the permutation 1,2,3,5,4,6,7.
a(8) > 0 due to the permutation 1,2,3,4,5,6,7,8.
a(9) > 0 due to the permutation 1,3,2,5,8,6,4,7,9.
a(10) > 0 due to the permutation 1,2,5,4,7,6,3,8,9,10.
a(11) > 0 due to the permutation 1,2,3,4,5,7,6,8,9,10,11.
a(12) > 0 due to the permutation 1,4,9,2,5,8,3,10,7,6,11,12.
		

Crossrefs

Programs

  • Mathematica
    (*A program to compute the required permutations for n = 9.*)
    V[i_]:=Part[Permutations[{2,3,4,5,6,7,8}],i]
    m=0
    Do[Do[If[GCD[If[j==0,1,Part[V[i],j]]+If[j<7,Part[V[i],j+1],9],9]>1,Goto[aa]],{j,0,7}];
    m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",9];Label[aa];Continue,{i,1,7!}]

Extensions

a(12)-a(27) from Max Alekseyev, Sep 13 2013

A228772 Number of undirected circular permutations i_0,i_1,...,i_{n-1} of 0,1,...,n-1 such that i_0+i_1+i_2, i_1+i_2+i_3, ..., i_{n-3}+i_{n-2}+i_{n-1}, i_{n-2}+i_{n-1}+i_0, i_{n-1}+i_0+i_1 are pairwise distinct modulo n.

Original entry on oeis.org

0, 3, 2, 24, 24, 392, 513, 4080, 8090, 96816, 238296, 2023896, 7325520, 63277376, 277838352, 2185076682, 12898278126
Offset: 3

Views

Author

Zhi-Wei Sun, Sep 03 2013

Keywords

Comments

Note that if n > 3 is not a multiple of 3 then a(n) > 0 since the natural circular permutation (0,1,2,...,n-1) meets the requirement.
Conjecture: Let G be an additive abelian group. If G is cyclic or G contains no involution, then for any finite subset A of G with |A| = n > 3, there is a numbering a_1,...,a_n of the elements of A such that the n sums a_1+a+2+a_3, a_2+a_3+a_4, ..., a_{n-2}+a_{n-1}+a_n, a_{n-1}+a_n+a_1, a_n+a_1+a_2 are pairwise distinct.
On Sep 13 2013, the author proved the conjecture for any torsion-free abelian group G.

Examples

			a(4) = 3 due to the circular permutations (0,1,2,3), (0,1,3,2) and (0,2,1,3).
a(5) = 2 due to the circular permutations (0,1,2,3,4) and(0,2,4,1,3).
a(6) > 0 due to the circular permutation (0,1,2,4,5,3).
a(9) > 0 due to the circular permutation (0,1,2,3,8,5,6,7,4).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 9. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (0,4,7,6,5,8,3,2,1) is identical to (0,1,2,3,8,5,6,7,4) if we ignore direction.*)
    V[i_]:=Part[Permutations[{1,2,3,4,5,6,7,8}],i]
    m=0
    Do[If[Length[Union[Table[Mod[If[j==0,0,Part[V[i],j]]+If[j<8,Part[V[i],j+1],0]+If[j<7,Part[V[i],j+2],If[j==7,0,Part[V[i],1]]],9],{j,0,8}]]]<9,Goto[aa]];
    m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",Part[V[i],8]];Label[aa];Continue,{i,1,8!}]

Extensions

a(10)-a(18) from Bert Dobbelaere, Sep 08 2019
a(19) from Robin Visser, Sep 24 2023

A228638 Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as |i-j| is prime or not.

Original entry on oeis.org

0, 0, 0, 1, 2, -5, 12, -28, 32, -36, -44, -51, 90, -129, -572, 560, -228, -1265, -3752, -7344, -7168, -5200, -1800, 22225, -223908, -3353049, -16485870, -46205099, 57203700, 262750475, -1758254750, -4839494944, -8039222088, 8145218368, 45619374914, -1229448140891, -1178481640872, -942903100573, 1256162791268, -805110454771
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 28 2013

Keywords

Comments

Conjecture: a(n) is nonzero for any n > 3.

Examples

			a(1) = 0 since |1-1| = 0 is not a prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[If[PrimeQ[Abs[i-j]]==True,1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,50}]

A229543 Number of undirected circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 9, 14, 32, 184, 123, 696, 935, 6554, 21105, 60756, 241780, 517970, 1835109, 5741024, 16091004, 63590090, 285113492, 1098219807
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 25 2013

Keywords

Comments

Theorem: For any integer n > 5, there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n with both 1 and 4 adjacent to 0 such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.
Proof: By examples, the result holds for n = 6, ..., 11. Below we assume n > 11 and exhibit a circular permutation meeting the requirement.
If n == 0 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,8,7,6,2,3,4,0,1,5,9,10,11,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 3 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,11,10,9,5,1,0,4,3,2,6,7,8,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 1 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,9,8,7,3,2,1,0,4,5,6,10,11,12,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 4 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,12,11,10,6,5,4,0,1,2,3,7,8,9,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 2 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,10,9,8,4,0,1,5,6,2,3,7,11,12,13,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 5 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,13,12,11,7,3,2,6,5,1,0,4,8,9,10,...,n-9,n-8,n-7,n-3,n-2,n-1).
Zhi-Wei Sun also used a similar method to show that for any positive integer n not equal to 2 or 4 there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are triangular numbers.

Examples

			a(1) = 1 due to the circular permutation (0,1).
a(4) = 1 due to the circular permutation (0,1,2,3,4).
a(6) = 1 due to the circular permutation (0,1,5,6,2,3,4).
a(7) = 1 due to the circular permutation (0,1,2,3,7,6,5,4).
a(8) = 1 due to the circular permutation (0,1,5,6,2,3,7,8,4).
a(9) = 9 due to the circular permutations
  (0,1,2,3,4,5,6,7,8,9), (0,1,2,3,4,8,7,6,5,9),
  (0,1,2,3,7,6,5,4,8,9), (0,1,2,3,7,6,5,9,8,4),
  (0,1,2,6,5,4,3,7,8,9), (0,1,2,6,5,9,8,7,3,4),
  (0,1,5,4,3,2,6,7,8,9), (0,1,5,9,8,7,6,2,3,4),
  (0,4,3,2,1,5,6,7,8,9).
a(10) > 0 due to the permutation (0,1,2,3,7,8,9,10,6,5,4).
a(11) > 0 due to the permutation (0,1,5,9,8,7,11,10,6,2,3,4).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 8. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction. Thus a(8) is half of the number of circular permutations yielded by this program. *)
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    f[i_,j_]:=f[i,j]=SQ[Abs[i-j]]
    V[i_]:=V[i]=Part[Permutations[{1,2,3,4,5,6,7,8}],i]
    m=0
    Do[Do[If[f[If[j==0,0,Part[V[i],j]],If[j<8,Part[V[i],j+1],0]]==False,Goto[aa]],{j,0,8}];m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",Part[V[i],8]];Label[aa];Continue,{i,1,8!}]

Extensions

a(10)-a(24) from Alois P. Heinz, Sep 26 2013
a(25)-a(26) from Max Alekseyev, Jan 08 2015
Showing 1-7 of 7 results.