cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A282011 Number T(n,k) of k-element subsets of [n] having an even sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 6, 3, 0, 1, 3, 6, 10, 9, 3, 0, 1, 3, 9, 19, 19, 9, 3, 1, 1, 4, 12, 28, 38, 28, 12, 4, 1, 1, 4, 16, 44, 66, 60, 40, 20, 5, 0, 1, 5, 20, 60, 110, 126, 100, 60, 25, 5, 0, 1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1, 1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 04 2017

Keywords

Comments

Row n is symmetric if and only if n mod 4 in {0,3} (or if T(n,n) = 1).

Examples

			T(5,0) = 1: {}.
T(5,1) = 2: {2}, {4}.
T(5,2) = 4: {1,3}, {1,5}, {2,4}, {3,5}.
T(5,3) = 6: {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}.
T(5,4) = 3: {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
T(5,5) = 0.
T(7,7) = 1: {1,2,3,4,5,6,7}.
Triangle T(n,k) begins:
  1;
  1, 0;
  1, 1,  0;
  1, 1,  1,   1;
  1, 2,  2,   2,   1;
  1, 2,  4,   6,   3,   0;
  1, 3,  6,  10,   9,   3,   0;
  1, 3,  9,  19,  19,   9,   3,   1;
  1, 4, 12,  28,  38,  28,  12,   4,   1;
  1, 4, 16,  44,  66,  60,  40,  20,   5,   0;
  1, 5, 20,  60, 110, 126, 100,  60,  25,   5,  0;
  1, 5, 25,  85, 170, 226, 226, 170,  85,  25,  5, 1;
  1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1;
		

Crossrefs

Columns k=0..10 give (offsets may differ): A000012, A004526, A002620, A005993, A005994, A032092, A032093, A018211, A018212, A282077, A282078.
Row sums give A011782.
Main diagonal gives A133872(n+1).
Lower diagonals T(n+j,n) for j=1..10 give: A004525(n+1), A282079, A228705, A282080, A282081, A282082, A282083, A282084, A282085, A282086.
T(2n,n) gives A119358.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(
          `if`(n=0, s, b(n-1, s)+x*b(n-1, irem(s+n, 2))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..16);
  • Mathematica
    Flatten[Table[Sum[Binomial[Ceiling[n/2],2j]Binomial[Floor[n/2],k-2j],{j,0,Floor[(n+1)/4]}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    a(n,k)=sum(j=0,floor((n+1)/4),binomial(ceil(n/2),2*j)*binomial(floor(n/2),k-2*j));
    tabl(nn)={for(n=0,nn,for(k=0,n,print1(a(n,k),", "););print(););} \\ Indranil Ghosh, Feb 26 2017

Formula

T(n,k) = Sum_{j=0..floor((n+1)/4)} C(ceiling(n/2),2*j) * C(floor(n/2),k-2*j).
T(n,k) = A007318(n,k) - A159916(n,k).
Sum_{k=0..n} k * T(n,k) = A057711(n-1) for n>0.
Sum_{k=0..n} (k+1) * T(n,k) = A087447(n) + [n=2].

A159914 Half the number of (n-3)-element subsets of {1,...,n} whose elements sum up to an odd value.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 5, 8, 14, 22, 30, 40, 55, 73, 91, 112, 140, 172, 204, 240, 285, 335, 385, 440, 506, 578, 650, 728, 819, 917, 1015, 1120, 1240, 1368, 1496, 1632, 1785, 1947, 2109, 2280, 2470, 2670, 2870, 3080, 3311, 3553, 3795, 4048, 4324, 4612, 4900, 5200
Offset: 0

Views

Author

M. F. Hasler, May 02 2009

Keywords

Comments

Half the preantepenultimate column, i.e., T(n, n-3), of the triangle defined in A159916.

Examples

			The first nontrivial term a(4)=1 is half the number of 4-3=1-element subsets of {1,2,3,4} whose elements have an odd sum: {1} and {3}.
a(5)=3 is half the number of 5-3=2-element subsets of {1,2,3,4,5} whose elements have an odd sum: {1,2}, {1,4}, {2,3}, {2,5}, {3,4} and {4,5}.
		

Crossrefs

Cf. A228705 (counts subsets with even sum).

Programs

  • PARI
    A159914(n)=polcoeff((1-x+x^2)/(1-x)^4/(1+x^2)^2+O(x^(n-3)),n-4)

Formula

G.f.: x^4*(1-x+x^2)/((1-x)^4*(1+x^2)^2).
a(n) = A159916(n(n-1)/2+n-3)/2 = T(n,n-3)/2 as defined there.
a(2k) = k(k-1)(2k-1)/6.
Euler transform of 3 - x + x^2 + 2*x^3 - x^5. - Simon Plouffe, Jun 22 2018

A228706 Expansion of (1 - 3*x + 5*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)^2).

Original entry on oeis.org

1, 1, 1, 5, 11, 14, 18, 30, 45, 55, 67, 91, 119, 140, 164, 204, 249, 285, 325, 385, 451, 506, 566, 650, 741, 819, 903, 1015, 1135, 1240, 1352, 1496, 1649, 1785, 1929, 2109, 2299, 2470, 2650, 2870, 3101, 3311, 3531, 3795, 4071, 4324, 4588, 4900, 5225, 5525
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2013

Keywords

Comments

A159914 and A228705 both satisfy the same recurrence relation, and both count (n-3)-element subsets of {1..n} having even resp. odd sum. Is there a similar subset-counting interpretation for this sequence? - M. F. Hasler, Jun 22 2018

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)); // Vincenzo Librandi, Sep 07 2013
    
  • Mathematica
    CoefficientList[Series[(1 - 3 x + 5 x^2 - 3 x^3 + x^4) / ((1 - x)^4 (1 + x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
  • PARI
    Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)+O(x^99)) \\ M. F. Hasler, Jun 22 2018

Formula

a(n) = (n+2)*(2*(n+1)*(n+3)+9*(1+(-1)^n)*i^(n*(n+1)))/48, where i=sqrt(-1). [Bruno Berselli, Sep 07 2013]
Showing 1-3 of 3 results.