cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228887 a(n) = binomial(3*n + 1,3).

Original entry on oeis.org

4, 35, 120, 286, 560, 969, 1540, 2300, 3276, 4495, 5984, 7770, 9880, 12341, 15180, 18424, 22100, 26235, 30856, 35990, 41664, 47905, 54740, 62196, 70300, 79079, 88560, 98770, 109736, 121485, 134044, 147440, 161700, 176851, 192920, 209934, 227920, 246905
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Crossrefs

Cf. A006566 (binomial(3*n,3)) and A228888 (binomial(3*n + 2,3)).

Programs

  • Magma
    [Binomial(3*n+1,3): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(binomial(3*n+1,3), n = 1..38);
  • Mathematica
    Table[(Binomial[3n + 1, 3]), {n, 40}] (* Vincenzo Librandi, Sep 10 2013 *)
    LinearRecurrence[{4,-6,4,-1},{4,35,120,286},40] (* Harvey P. Dale, Jan 11 2015 *)

Formula

a(n) = -a(-n) = binomial(3*n + 1,3) = 1/6*(3*n + 1)*(3*n)*(3*n - 1).
G.f.: x*(4 + 19*x + 4*x^2)/(1 - x)^4 = 4*x + 35*x^2 + 120*x^3 + ....
Sum_{n>=1} 1/a(n) = 3*log(3) - 3.
Sum_{n>=1} (-1)^n/a(n) = 4*log(2) - 3.
E.g.f.: exp(x)*x*(8 + 27*x + 9*x^2)/2. - Stefano Spezia, Sep 20 2024