cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228888 a(n) = binomial(3*n + 2, 3).

Original entry on oeis.org

10, 56, 165, 364, 680, 1140, 1771, 2600, 3654, 4960, 6545, 8436, 10660, 13244, 16215, 19600, 23426, 27720, 32509, 37820, 43680, 50116, 57155, 64824, 73150, 82160, 91881, 102340, 113564, 125580, 138415, 152096, 166650, 182104, 198485, 215820, 234136, 253460
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Examples

			From _Bruno Berselli_, Jun 26 2018: (Start)
Including 0, row sums of the triangle:
| 0|   .................................................................. 0
| 1|   2   3   4   ..................................................... 10
| 5|   6   7   8   9  10  11   ......................................... 56
|12|  13  14  15  16  17  18  19  20  21   ............................ 165
|22|  23  24  25  26  27  28  29  30  31  32  33  34   ................ 364
|35|  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50   .... 680
...
in the first column of which we have the pentagonal numbers (A000326).
(End)
		

Crossrefs

Cf. A006566 (binomial(3*n,3)) and A228887 (binomial(3*n + 1,3)).
Cf. A228889.
Similar sequences are listed in A316224.

Programs

  • Magma
    [Binomial(3*n + 2, 3): n in [1..40]]; // Vincenzo Librandi, Sep 09 2013
  • Maple
    seq(binomial(3*n+2,3), n = 1..38);
  • Mathematica
    Table[(Binomial[3 n + 2, 3]), {n, 1, 40}] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

a(n) = binomial(3*n + 2, 3) = 1/6*(3*n)*(3*n + 1)*(3*n + 2).
a(-n) = - A006566(n).
a(n) = 1/6*A228889(n).
G.f.: (10*x + 16*x^2 + x^3)/(1 - x)^4 = 10*x + 56*x^2 + 165*x^3 + ....
Sum {n >= 1} 1/a(n) = 9/2 - 3/2*log(3) - 1/2*sqrt(3)*Pi.
Sum {n >= 1} (-1)^n/a(n) = 9/2 - 4*log(2) - 1/3*sqrt(3)*Pi.