A006566
Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.
Original entry on oeis.org
0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Ed Pegg Jr, Dodecahedral 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
a006566_list = scanl (+) 0 a093485_list -- Reinhard Zumkeller, Jun 16 2013
-
[n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
-
A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
-
a(n)=n*(3*n-1)*(3*n-2)/2
A228887
a(n) = binomial(3*n + 1,3).
Original entry on oeis.org
4, 35, 120, 286, 560, 969, 1540, 2300, 3276, 4495, 5984, 7770, 9880, 12341, 15180, 18424, 22100, 26235, 30856, 35990, 41664, 47905, 54740, 62196, 70300, 79079, 88560, 98770, 109736, 121485, 134044, 147440, 161700, 176851, 192920, 209934, 227920, 246905
Offset: 1
-
[Binomial(3*n+1,3): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
-
seq(binomial(3*n+1,3), n = 1..38);
-
Table[(Binomial[3n + 1, 3]), {n, 40}] (* Vincenzo Librandi, Sep 10 2013 *)
LinearRecurrence[{4,-6,4,-1},{4,35,120,286},40] (* Harvey P. Dale, Jan 11 2015 *)
A316224
a(n) = n*(2*n + 1)*(4*n + 1).
Original entry on oeis.org
0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0
Row sums of the triangle:
| 0 | ................................................................. 0
| 1 | 2 3 4 5 .................................................... 15
| 6 | 7 8 9 10 11 12 13 14 ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27 ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number:
A027480 (s=3),
A055112 (s=4),
A228888 (s=5).
-
List([0..40], n -> n*(2*n+1)*(4*n+1));
-
[n*(2*n+1)*(4*n+1) for n in 0:40] |> println
-
[n*(2*n+1)*(4*n+1): n in [0..40]];
-
seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
-
Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
-
makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
-
vector(40, n, n--; n*(2*n+1)*(4*n+1))
-
[n*(2*n+1)*(4*n+1) for n in range(40)]
-
[n*(2*n+1)*(4*n+1) for n in (0..40)]
A228889
a(n) = 3*n*(3*n + 1)*(3*n + 2).
Original entry on oeis.org
60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1
-
[3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
-
seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
-
CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *)
Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)
A361949
Triangle read by rows. T(n, k) = binomial(3*n - 1, 3*k - 1).
Original entry on oeis.org
1, 10, 1, 28, 56, 1, 55, 462, 165, 1, 91, 2002, 3003, 364, 1, 136, 6188, 24310, 12376, 680, 1, 190, 15504, 125970, 167960, 38760, 1140, 1, 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1, 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1
Offset: 1
Table T(n, k) starts:
[1] 1;
[2] 10, 1;
[3] 28, 56, 1;
[4] 55, 462, 165, 1;
[5] 91, 2002, 3003, 364, 1;
[6] 136, 6188, 24310, 12376, 680, 1;
[7] 190, 15504, 125970, 167960, 38760, 1140, 1;
[8] 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1;
[9] 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1.
-
T := (n, k) -> binomial(3*n - 1, 3*k - 1):
seq(print(seq(T(n, k), k = 1..n)), n = 1..8);
Showing 1-5 of 5 results.
Comments