cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.

Original entry on oeis.org

0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {5,3}.
A093485 = first differences; A124388 = second differences; third differences = 27. - Reinhard Zumkeller, Oct 30 2006
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
From Peter Bala, Sep 09 2013: (Start)
a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term:
Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006564 (icosahedral numbers).

Programs

  • Haskell
    a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
    a006566_list = scanl (+) 0 a093485_list  -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
    CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
  • PARI
    a(n)=n*(3*n-1)*(3*n-2)/2
    

Formula

G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = A000292(3n-3) = A054776(n)/6 = n*A060544(n).
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
a(n) = A006564(n) + A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)

Extensions

More terms from Henry Bottomley, Nov 23 2001

A228887 a(n) = binomial(3*n + 1,3).

Original entry on oeis.org

4, 35, 120, 286, 560, 969, 1540, 2300, 3276, 4495, 5984, 7770, 9880, 12341, 15180, 18424, 22100, 26235, 30856, 35990, 41664, 47905, 54740, 62196, 70300, 79079, 88560, 98770, 109736, 121485, 134044, 147440, 161700, 176851, 192920, 209934, 227920, 246905
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Crossrefs

Cf. A006566 (binomial(3*n,3)) and A228888 (binomial(3*n + 2,3)).

Programs

  • Magma
    [Binomial(3*n+1,3): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(binomial(3*n+1,3), n = 1..38);
  • Mathematica
    Table[(Binomial[3n + 1, 3]), {n, 40}] (* Vincenzo Librandi, Sep 10 2013 *)
    LinearRecurrence[{4,-6,4,-1},{4,35,120,286},40] (* Harvey P. Dale, Jan 11 2015 *)

Formula

a(n) = -a(-n) = binomial(3*n + 1,3) = 1/6*(3*n + 1)*(3*n)*(3*n - 1).
G.f.: x*(4 + 19*x + 4*x^2)/(1 - x)^4 = 4*x + 35*x^2 + 120*x^3 + ....
Sum_{n>=1} 1/a(n) = 3*log(3) - 3.
Sum_{n>=1} (-1)^n/a(n) = 4*log(2) - 3.
E.g.f.: exp(x)*x*(8 + 27*x + 9*x^2)/2. - Stefano Spezia, Sep 20 2024

A316224 a(n) = n*(2*n + 1)*(4*n + 1).

Original entry on oeis.org

0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0

Views

Author

Bruno Berselli, Jun 27 2018

Keywords

Comments

Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).

Examples

			Row sums of the triangle:
|  0 |  ................................................................. 0
|  1 |  2  3  4  5  .................................................... 15
|  6 |  7  8  9 10 11 12 13 14  ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27  ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
		

Crossrefs

First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).

Programs

  • GAP
    List([0..40], n -> n*(2*n+1)*(4*n+1));
    
  • Julia
    [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
  • Magma
    [n*(2*n+1)*(4*n+1): n in [0..40]];
    
  • Maple
    seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
  • Maxima
    makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
    
  • PARI
    vector(40, n, n--; n*(2*n+1)*(4*n+1))
    
  • Python
    [n*(2*n+1)*(4*n+1) for n in range(40)]
    
  • Sage
    [n*(2*n+1)*(4*n+1) for n in (0..40)]
    

Formula

O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022

A228889 a(n) = 3*n*(3*n + 1)*(3*n + 2).

Original entry on oeis.org

60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Comments

Related sequences are A054776 and A097321.

Crossrefs

Programs

  • Magma
    [3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
  • Mathematica
    CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *)
    Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)

Formula

a(n) = 3*n*(3*n + 1)*(3*n + 2) = 6*binomial(3*n + 2,3) = 6*A228888(n).
a(-n) = - A054776(n).
G.f.: 6*x*(10 + 16*x + x^2)/(1 - x)^4 = 60*x + 336*x^2 + 990*x^3 + ....
Sum {n >= 1} 1/a(n) = 3/4 - log(3)/4 - 1/12*sqrt(3)*Pi;
Sum {n >= 1} (-1)^n/a(n) = 3/4 - 2/3*log(2) - 1/18*sqrt(3)*Pi.

A361949 Triangle read by rows. T(n, k) = binomial(3*n - 1, 3*k - 1).

Original entry on oeis.org

1, 10, 1, 28, 56, 1, 55, 462, 165, 1, 91, 2002, 3003, 364, 1, 136, 6188, 24310, 12376, 680, 1, 190, 15504, 125970, 167960, 38760, 1140, 1, 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1, 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1
Offset: 1

Views

Author

Peter Luschny, Mar 31 2023

Keywords

Examples

			Table T(n, k) starts:
  [1]   1;
  [2]  10,     1;
  [3]  28,    56,       1;
  [4]  55,   462,     165,       1;
  [5]  91,  2002,    3003,     364,       1;
  [6] 136,  6188,   24310,   12376,     680,       1;
  [7] 190, 15504,  125970,  167960,   38760,    1140,      1;
  [8] 253, 33649,  490314, 1352078,  817190,  100947,   1771,    1;
  [9] 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1.
		

Crossrefs

Cf. A082365 (row sums), A228888 (subdiagonal), A060544 (column 1), A066802 (central column).

Programs

  • Maple
    T := (n, k) -> binomial(3*n - 1, 3*k - 1):
    seq(print(seq(T(n, k), k = 1..n)), n = 1..8);
Showing 1-5 of 5 results.