A229082 Number of circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 numbers i_0^2+i_1, i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_0 are of the form (p-1)/2 with p an odd prime.
1, 1, 1, 0, 2, 3, 7, 11, 9, 5, 41, 82, 254, 2412, 9524, 13925, 85318, 220818, 1662421, 10496784, 20690118, 97200566, 460358077
Offset: 1
Examples
a(1) = 1 due to the circular permutation (0,1). a(2) = 1 due to the circular permutation (0,2,1). a(3) = 1 due to the circular permutation (0,3,2,1). a(5) = 2 due to the circular permutations (0,3,2,4,5,1) and (0,3,5,4,2,1). a(6) = 3 due to the circular permutations (0,3,6,5,4,2,1), (0,6,3,2,4,5,1), (0,6,3,5,4,2,1). a(7) = 7 due to the circular permutations (0,3,6,5,4,2,7,1), (0,3,6,5,4,7,2,1), (0,6,3,2,4,7,5,1), (0,6,3,2,5,4,7,1), (0,6,3,2,7,4,5,1), (0,6,3,5,4,2,7,1), (0,6,3,5,4,7,2,1). a(8) = 11 due to the circular permutations (0,3,6,5,8,4,2,7,1), (0,3,6,5,8,4,7,2,1), (0,3,6,8,4,2,7,5,1), (0,4,6,8,4,7,2,5,1), (0,3,6,8,5,4,2,7,1), (0,3,6,8,5,4,7,2,1), (0,6,3,2,4,7,5,8,1), (0,6,3,2,5,8,4,7,1), (0,6,3,2,7,4,5,8,1), (0,6,3,5,8,4,2,7,1), (0,6,3,5,8,4,7,2,1). a(9) = 9 due to the circular permutations (0,6,3,9,2,4,7,5,8,1), (0,6,3,9,2,5,8,4,7,1), (0,6,3,9,2,7,4,5,8,1), (0,6,3,9,5,8,4,2,7,1), (0,6,3,9,5,8,4,7,2,1), (0,6,3,9,8,4,2,7,5,1), (0,6,3,9,8,4,7,2,5,1), (0,6,3,9,8,5,4,2,7,1), (0,6,3,9,8,5,4,7,2,1). a(20) > 0 due to the circular permutation (0,3,12,9,15,18,6,20,19,14,13,4,2,7,16,17,11,10,5,8,1).
Links
- Zhi-Wei Sun, Some new problems in additive combinatorics, preprint, arXiv:1309.1679 [math.NT], 2013-2014.
Programs
-
Mathematica
(* A program to compute required circular permutations for n = 7. *) p[i_,j_]:=tp[i,j]=PrimeQ[2(i^2+j)+1] V[i_]:=Part[Permutations[{1,2,3,4,5,6,7}],i] m=0 Do[Do[If[p[If[j==0,0,Part[V[i],j]],If[j<7,Part[V[i],j+1],0]]==False,Goto[aa]],{j,0,7}]; m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]
Extensions
a(10)-a(23) from Alois P. Heinz, Sep 13 2013
Comments