cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A229130 Number of permutations i_0, i_1, ..., i_n of 0, 1, ..., n with i_0 = 0 and i_n = n such that the n+1 numbers i_0^2+i_1, i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_0 are all relatively prime to both n-1 and n+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 6, 3, 42, 68, 2794, 0, 5311604, 478, 57009, 2716452, 10778632, 207360, 39187872956340, 106144, 26869397610, 11775466120, 22062519153360, 559350576, 29991180449906858400, 257272815600, 12675330087321600, 52248156883498208
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 15 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 2, 5, 11. Similarly, for any positive integer n not equal to 4, there is a permutation i_0, i_1, ..., i_n of 0, 1, ..., n with i_0 = 0 and i_n = n such that the n+1 numbers i_0^2-i_1, i_1^2-i_2, ..., i_{n-1}^2-i_n, i_n^2-i_0 are all coprime to both n-1 and n+1.
Zhi-Wei Sun also made the following general conjecture:
For any positive integer k, define E(k) to be the set of those positive integers n for which there is no permutation i_0, i_1, ..., i_n of 0, 1, ..., n with i_0 = 0 and i_n = n such that all the n+1 numbers i_0^k+i_1, i_1^k+i_2, ..., i_{n-1}^k+i_n, i_n^k+i_0 are coprime to both n-1 and n+1. Then E(k) is always finite; in particular, E(1) = {2,4}, E(2) = {2,5,11} and E(3) = {2,4}.

Examples

			a(3) = 1 due to the permutation (i_0,i_1,i_2,i_3)=(0,1,2,3).
a(4) = 1 due to the permutation (0,1,3,2,4).
a(6) = 1 due to the permutations
  (0,1,3,2,5,4,6), (0,1,3,4,2,5,6), (0,2,5,1,3,4,6),
  (0,3,2,4,1,5,6), (0,3,4,1,2,5,6), (0,4,1,3,2,5,6).
a(7) = 3 due to the permutations
  (0,1,6,5,4,3,2,7), (0,5,4,3,2,1,6,7), (0,5,6,1,4,3,2,7).
a(8) > 0 due to the permutation (0,2,1,4,6,5,7,3,8).
a(9) > 0 due to the permutation (0,1,2,3,4,5,6,7,8,9).
a(10) > 0 due to the permutation (0,1,3,5,4,7,9,8,6,2,10).
a(11) = 0 since 6 is the unique i among 0,...,11 with i^2+5 coprime to 11^2-1, and it is also the unique j among 1,...,10 with j^2+11 coprime to 11^2-1.
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required permutations for n = 8. *)
    V[i_]:=Part[Permutations[{1,2,3,4,5,6,7}],i]
    m=0
    Do[Do[If[GCD[If[j==0,0,Part[V[i],j]]^2+If[j<7,Part[V[i],j+1],8], 8^2-1]>1,Goto[aa]],{j,0,7}];
    m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",8];Label[aa];Continue,{i,1,7!}]

Extensions

a(12)-a(17) from Alois P. Heinz, Sep 15 2013
a(19) and a(23) from Alois P. Heinz, Sep 16 2013
a(18), a(20)-a(22) and a(24)-a(27) from Bert Dobbelaere, Feb 18 2020

A227456 Number of permutations i_0, i_1, ..., i_n of 0, 1, ..., n with i_0 = 0 and i_n = 1 such that all the n+1 numbers i_0^2+i_1, i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_0 are of the form (p+1)/4 with p a prime congruent to 3 modulo 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 11, 15, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 16 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Similarly, for any positive integer n, there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 numbers i_0^2+i_1, i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_0 are of the form (p-1)/4 with p a prime congruent to 1 modulo 4.
Note that if a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n with i_0 = 0 makes all the n+1 numbers i_0^2+i_1, i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_0 of the form (p+1)/4 with p a prime, then we must have i_n = 1. This can be explained as follows: If i_n > 1, then 3 | i_n since 4*(i_n^2+0)-1 is a prime not divisible by 3, and similarly i_{n-1},...,i_1 are also multiples of 3 since 4*(i_{n-1}^2+i_n)-1, ..., 4*(i_1^2+i_2)-1 are primes not divisible by 3. Therefore, i_n > 1 would lead to a contradiction.

Examples

			a(1) = a(2) = a(3) = a(4) = a(5) = 1 due to the permutations (0,1), (0,2,1), (0,3,2,1), (0,3,2,4,1), (0,3,2,4,5,1).
a(6) = 2 due to the permutations
    (0,3,6,2,4,5,1) and (0,3,6,5,2,4,1).
a(7) = 4 due to the permutations
    (0,3,6,2,4,5,7,1), (0,3,6,2,7,4,5,1),
    (0,3,6,5,2,7,4,1), (0,3,6,5,7,4,2,1).
a(8) = 11 due to the permutations
(0,3,6,2,4,5,8,7,1), (0,3,6,2,7,8,4,5,1), (0,3,6,2,8,4,5,7,1),
(0,3,6,2,8,7,4,5,1), (0,3,6,5,2,7,8,4,1), (0,3,6,5,2,8,7,4,1),
(0,3,6,5,7,8,2,4,1), (0,3,6,5,7,8,4,2,1), (0,3,6,5,8,2,7,4,1),
(0,3,6,5,8,4,2,7,1), (0,3,6,5,8,7,4,2,1).
a(9) > 0 due to the permutation (0,3,6,9,2,4,5,8,7,1).
a(10) > 0 due to the permutation (0,3,6,9,2,4,5,10,8,7,1).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required permutations for n = 8. *)
    f[i_,j_]:=f[i,j]=PrimeQ[4(i^2+j)-1]
    V[i_]:=V[i]=Part[Permutations[{2,3,4,5,6,7,8}],i]
    m=0
    Do[Do[If[f[If[j==0,0,Part[V[i],j]],If[j<7,Part[V[i],j+1],1]]==False,Goto[aa]],{j,0,7}];
    m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]," ",1];Label[aa];Continue,{i,1,7!}]

A229141 Number of circular permutations i_1, ..., i_n of 1, ..., n such that all the n sums i_1^2+i_2, ..., i_{n-1}^2+i_n, i_n^2+i_1 are among those integers m with the Jacobi symbol (m/(2n+1)) equal to 1.

Original entry on oeis.org

1, 0, 0, 2, 0, 1, 0, 5, 35, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 15 2013

Keywords

Comments

Conjecture: a(n) > 0 if 2*n+1 is a prime greater than 11.
Zhi-Wei Sun also made the following conjectures:
(1) For any prime p = 2*n+1 > 11, there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2-i_2, i_2^2-i_3, ..., i_{n-1}^2-i_n, i_n^2-i_1 are quadratic residues modulo p.
(2) Let p = 2*n+1 be an odd prime. If p > 13 (resp., p > 11), then there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2+i_2, i_2^2+i_3, ..., i_{n-1}^2+i_n, i_n^2+i_1 (resp., the n numbers i_1^2-i_2, i_2^2-i_3, ..., i_{n-1}^2-i_n, i_n^2-i_1) are primitive roots modulo p.
(3) Let p = 2*n+1 be an odd prime. If p > 19 (resp. p > 13), then there is a circular permutation i_1, ..., i_n of 1, ..., n such that all the n numbers i_1^2+i_2^2, i_2^2+i_3^2, ..., i_{n-1}^2+i_n^2, i_n^2+i_1^2 (resp., the n numbers i_1^2-i_2^2, i_2^2-i_3^2, ..., i_{n-1}^2-i_n^2, i_n^2-i_1^2) are primitive roots modulo p.
See also the linked arXiv paper of Sun for more conjectures involving primitive roots modulo primes.

Examples

			a(4) = 2 due to the permutations (1,3,2,4) and (1,4,3,2).
a(6) = 1 due to the permutation (1,3,5,2,6,4).
a(8) = 5 due to the permutations
   (1,3,4,2,5,8,6,7), (1,8,3,6,2,4,5,7), (1,8,3,6,7,4,2,5),
   (1,8,3,7,6,2,4,5), (1,8,6,7,3,4,2,5).
a(9) > 0 due to the permutation (1,3,7,6,8,4,9,2,5).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute the desired circular permutations for n = 8. *)
    f[i_,j_,p_]:=f[i,j,p]=JacobiSymbol[i^2+j,p]==1
    V[i_]:=Part[Permutations[{2,3,4,5,6,7,8}],i]
    m=0
    Do[Do[If[f[If[j==0,1,Part[V[i],j]],If[j<7,Part[V[i],j+1],1],17]==False,Goto[aa]],{j,0,7}];
    m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]

Extensions

a(10) = 0 from R. J. Mathar, Sep 15 2013

A229232 Number of undirected circular permutations pi(1), ..., pi(n) of 1, ..., n with the n numbers pi(1)*pi(2)-1, pi(2)*pi(3)-1, ..., pi(n-1)*pi(n)-1, pi(n)*pi(1)-1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 2, 2, 8, 2, 241, 0, 693, 376, 7687, 1082, 127563, 25113, 1353842, 559649
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 16 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5 with n not equal to 13.
Zhi-Wei Sun also made the following conjectures:
(1) For any integer n > 1, there is a permutation pi(1), ..., pi(n) of 1, ..., n such that the n numbers 2*pi(1)*pi(2)-1, ..., 2*pi(n-1)*pi(n)-1, 2*pi(n)*pi(1)-1 are all prime. Also, for any positive integer n not equal to 4, there is a permutation pi(1), ..., pi(n) of 1, ..., n such that the n numbers 2*pi(1)*pi(2)+1, ..., 2*pi(n-1)*pi(n)+1, 2*pi(n)*pi(1)+1 are all prime.
(2) Let F be a finite field with q > 7 elements. Then, there is a circular permutation a_1,...,a_{q-1} of the q-1 nonzero elements of F such that all the q-1 elements a_1*a_2-1, a_2*a_3-1, ..., a_{q-2}*a_{q-1}-1, a_{q-1}*a_1-1 are primitive elements of the field F (i.e., generators of the multiplicative group F\{0}). Also, there is a circular permutation b_1,...,b_{q-1} of the q-1 nonzero elements of F such that all the q-1 elements b_1*b_2+1, b_2*b_3+1, ..., b_{q-2}*b_{q-1}+1, b_{q-1}*b_1+1 are primitive elements of the field F.

Examples

			a(4) = 1 due to the circular permutation (1,3,2,4).
a(6) = 2 due to the circular permutations
   (1,3,2,4,5,6) and (1,3,2,6,5,4).
a(7) = 1 due to the circular permutation (1,3,2,7,6,5,4).
a(8) = 2 due to the circular permutations
   (1,3,2,7,6,5,4,8) and (1,4,5,6,7,2,3,8).
a(9) = 2 due to the circular permutations
   (1,3,4,5,6,7,2,9,8) and (1,3,8,9,2,7,6,5,4).
a(10) = 8 due to the circular permutations
   (1,3,4,5,6,7,2,9,10,8), (1,3,4,5,6,7,2,10,9,8),
   (1,3,8,9,10,2,7,6,5,4), (1,3,8,10,9,2,7,6,5,4),
   (1,3,10,8,9,2,7,6,5,4), (1,3,10,9,2,7,6,5,4,8),
   (1,4,5,6,7,2,3,10,9,8), (1,4,5,6,7,2,9,10,3,8).
a(13) = 0 since 8 is the unique j among 1, ..., 12 with 13*j-1 prime.
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 8. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (1,8,4,5,6,7,2,3) is identical to (1,3,2,7,6,5,4,8) if we ignore direction. Thus, a(8) is half of the number of circular permutations yielded by this program. *)
    V[i_]:=V[i]=Part[Permutations[{2,3,4,5,6,7,8}],i]
    f[i_,j_]:=f[i,j]=PrimeQ[i*j-1]
    m=0
    Do[Do[If[f[If[j==0,1,Part[V[i],j]],If[j<7,Part[V[i],j+1],1]]==False,Goto[aa]],{j,0,7}];
    m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]

Extensions

a(11)-a(21) from Pontus von Brömssen, Jan 08 2025

A229827 Number of circular permutations i_1,...,i_n of 1,...,n such that the n numbers i_1^2+i_2, i_2^2+i_3, ..., i_{n-1}^2+i_n, i_n^2+i_1 form a complete system of residues modulo n.

Original entry on oeis.org

0, 0, 0, 4, 0, 24, 0, 0, 0, 5308, 0, 123884, 0, 0, 0, 147288372, 0, 7238567052, 0, 0, 0
Offset: 2

Views

Author

Zhi-Wei Sun, Sep 30 2013

Keywords

Comments

Conjecture: (i) a(p) > 0 for any prime p > 3. Moreover, for any finite field F(q) with q elements and a polynomial P(x) over F(q) of degree smaller than q-1, if P(x) is not of the form c-x, then there is a circular permutation a_1, ..., a_q of all the elements of F(q) with
{P(a_1)+a_2, P(a_2)+a_3, ..., P(a_{q-1})+a_q, P(a_q)+a_1}
equal to F(q).
(ii) Let F be any field with |F| > 7, and let A be a finite subset of F with |A| = n > 2. Let P(x) be a polynomial over F whose degree is smaller than p-1 if F is of prime characteristic p. If P(x) is not of the form c-x, then there is a circular permutation a_1, ..., a_n of all the elements of A such that the n sums P(a_1)+a_2, P(a_2)+a_3, ..., P(a_{n-1})+a_n, P(a_n)+a_1 are pairwise distinct.
Clearly, if a(n) > 0, then we must have 1^2+2^2+...+n^2 == 0 (mod n), i.e., (n+1)*(2n+1) == 0 (mod 6). Thus, when n is divisible by 2 or 3, we must have a(n) = 0.
It is well known that for any finite field F(q) with q elements we have sum_{x in F(q)} x^k = 0 for every k = 0, ..., q-2.
Verified for n < 256: a(n) > 0 iff n is not divisible by 2 or 3. - Bert Dobbelaere, Apr 23 2021

Examples

			a(5) = 4 due to the circular permutations
    (1,3,4,5,2), (1,4,2,3,5), (1,5,2,4,3), (1,5,4,2,3).
a(7) > 0 due to the circular permutation (1,2,3,7,4,6,5).
a(11) > 0 due to the circular permutation
    (1,2,3,4,6,5,9,11,10,8,7).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute desired circular permutations for n = 7. *)
      V[i_]:=Part[Permutations[{2,3,4,5,6,7}],i]
    m=0
    Do[If[Length[Union[Table[Mod[If[j==0,1,Part[V[i],j]]^2+If[j<6,Part[V[i],j+1],1],7],{j,0,6}]]]<7,Goto[aa]];
    m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]];Label[aa];Continue,{i,1,6!}]

Extensions

a(11)-a(22) from Bert Dobbelaere, Apr 23 2021
Showing 1-5 of 5 results.