A229115 Numbers n such that sigma(n) mod n - antisigma(n) mod n = 14, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
32, 44, 52, 68, 76, 92, 116, 124, 144, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964, 1004, 1028
Offset: 1
Keywords
Examples
Number 32 is in sequence because sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..2761 (all terms < 10^5)
Crossrefs
Programs
-
PARI
isok(n) = ((sigma(n) % n) - (n*(n+1)/2 - sigma(n)) % n) == 14; \\ Michel Marcus, Oct 31 2013
Comments