cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229115 Numbers n such that sigma(n) mod n - antisigma(n) mod n = 14, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

Original entry on oeis.org

32, 44, 52, 68, 76, 92, 116, 124, 144, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964, 1004, 1028
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) = 14.
Value 14 has in sequence A229087(n) anomalous increased frequency.
Subsequence of A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n).

Examples

			Number 32 is in sequence because sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n), A229090.

Programs

  • PARI
    isok(n) = ((sigma(n) % n) - (n*(n+1)/2 - sigma(n)) % n) == 14; \\ Michel Marcus, Oct 31 2013