A229183 a(n) = n*(n^2 + 3)/2.
0, 2, 7, 18, 38, 70, 117, 182, 268, 378, 515, 682, 882, 1118, 1393, 1710, 2072, 2482, 2943, 3458, 4030, 4662, 5357, 6118, 6948, 7850, 8827, 9882, 11018, 12238, 13545, 14942, 16432, 18018, 19703, 21490, 23382, 25382, 27493, 29718, 32060, 34522, 37107, 39818
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(n^2 + 3) div 2: n in [0..50]]; // Vincenzo Librandi, Sep 23 2013
-
Maple
A229183 := proc(n) n*(n^2+3) /2; end proc: [seq(A229183(n),n=0..30)] ; # R. J. Mathar, Aug 16 2019
-
Mathematica
Table[(n^3 + 3n)/2, {n, 0, 100}] (* T. D. Noe, Sep 16 2013 *) CoefficientList[Series[x (2 - x + 2 x^2)/(x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 23 2013 *)
-
PARI
vector(100,n,((n-1)^3+3*n-3)/2) \\ Derek Orr, Mar 12 2015
-
Python
{print((n**3+3*n)/2,end=', ') for n in range(0,100)} # Simplified by Derek Orr, Mar 12 2015
Formula
G.f.: x*(2 - x + 2*x^2) / (x-1)^4. - R. J. Mathar, Sep 22 2013
a(n)^2 + 1 = (n^2 + 1)^2 * ((n/2)^2 + 1). - Joerg Arndt, Jan 22 2015
E.g.f.: exp(x)*x*(4 + 3*x + x^2)/2. - Stefano Spezia, Jul 04 2021
Comments