cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229183 a(n) = n*(n^2 + 3)/2.

Original entry on oeis.org

0, 2, 7, 18, 38, 70, 117, 182, 268, 378, 515, 682, 882, 1118, 1393, 1710, 2072, 2482, 2943, 3458, 4030, 4662, 5357, 6118, 6948, 7850, 8827, 9882, 11018, 12238, 13545, 14942, 16432, 18018, 19703, 21490, 23382, 25382, 27493, 29718, 32060, 34522, 37107, 39818
Offset: 0

Views

Author

Derek Orr, Sep 15 2013

Keywords

Comments

Numbers a(n) such that (a(n) + B)^(1/3) + (a(n) - B)^(1/3) = n, where B = sqrt(a(n)^2 + 1).
4*a(n) is the sum of two cubes. In fact: 2*n*(n^2 + 3) = (n-1)^3 + (n+1)^3. - Bruno Berselli, Apr 11 2016
From Olivier Gérard, Aug 07 2016 (Start)
Row sums of n consecutive integers, starting at 2, seen as a triangle:
.
2 | 2
7 | 3 4
18 | 5 6 7
38 | 8 9 10 11
70 | 12 13 14 15 16
117 | 17 18 19 20 21 22
(End)
Take a long horizontal strip of paper 1 unit high and mark two points on the top edge, n/2 and n units from the top left corner. Then fold over the top left corner so that the fold line passes through the bottom left corner and the point n units along the top edge. Then draw a line from the bottom left corner of the strip through the new position of the n/2 point. The point at which that shallow diagonal line meets the top edge of the strip of paper will be a(n) from the top left corner. - Elliott Line, Jul 09 2018

Crossrefs

Cf. A006003 (row sums of integers, starting with 1).
Cf. A027480 (row sums of integers, starting with 0).

Programs

  • Magma
    [n*(n^2 + 3) div 2: n in [0..50]]; // Vincenzo Librandi, Sep 23 2013
  • Maple
    A229183 := proc(n)
        n*(n^2+3) /2;
    end proc:
    [seq(A229183(n),n=0..30)] ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    Table[(n^3 + 3n)/2, {n, 0, 100}] (* T. D. Noe, Sep 16 2013 *)
    CoefficientList[Series[x (2 - x + 2 x^2)/(x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • PARI
    vector(100,n,((n-1)^3+3*n-3)/2) \\ Derek Orr, Mar 12 2015
    
  • Python
    {print((n**3+3*n)/2,end=', ') for n in range(0,100)} # Simplified by Derek Orr, Mar 12 2015
    

Formula

G.f.: x*(2 - x + 2*x^2) / (x-1)^4. - R. J. Mathar, Sep 22 2013
a(n)^2 + 1 = (n^2 + 1)^2 * ((n/2)^2 + 1). - Joerg Arndt, Jan 22 2015
E.g.f.: exp(x)*x*(4 + 3*x + x^2)/2. - Stefano Spezia, Jul 04 2021