cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A037444 Number of partitions of n^2 into squares.

Original entry on oeis.org

1, 1, 2, 4, 8, 19, 43, 98, 220, 504, 1116, 2468, 5368, 11592, 24694, 52170, 108963, 225644, 462865, 941528, 1899244, 3801227, 7550473, 14889455, 29159061, 56722410, 109637563, 210605770, 402165159, 763549779, 1441686280, 2707535748, 5058654069, 9404116777
Offset: 0

Views

Author

Keywords

Comments

Is lim_{n->inf} a(n)^(1/n) > 1? - Paul D. Hanna, Aug 20 2002
The limit above is equal to 1 (see formula by Hardy & Ramanujan for A001156). - Vaclav Kotesovec, Dec 29 2016

Crossrefs

Entries with square index in A001156.
A row or column of the array in A259799.

Programs

  • Haskell
    a037444 n = p (map (^ 2) [1..]) (n^2) where
       p _      0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 14 2011
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i)))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    max=33; se = Series[ Product[1/(1-x^(k^2)), {k, 1, max}], {x, 0, max^2}]; a[n_] := Coefficient[se, x^(n^2)]; a[0] = 1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Oct 18 2011 *)

Formula

a(n) = A001156(n^2) = coefficient of x^(n^2) in the series expansion of Prod_{k>=1} 1/(1 - x^(k^2)).
a(n) ~ 3^(-1/2) * (4*Pi)^(-7/6) * Zeta(3/2)^(2/3) * n^(-7/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3)) [Hardy & Ramanujan, 1917, modified from A001156]. - Vaclav Kotesovec, Dec 29 2016

A229468 Number T(n,k) of parts of each size k^2 in all partitions of n^2 into squares; triangle T(n,k), 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 4, 1, 15, 3, 1, 50, 11, 2, 1, 156, 35, 10, 4, 1, 460, 101, 36, 14, 4, 1, 1296, 298, 105, 44, 16, 6, 1, 3522, 798, 300, 130, 56, 23, 6, 1, 9255, 2154, 827, 377, 174, 82, 31, 9, 1, 23672, 5490, 2164, 1015, 502, 243, 108, 43, 10, 1, 59050, 13914, 5525, 2658, 1350, 705, 343, 154, 55, 13, 1
Offset: 1

Views

Author

Keywords

Examples

			For n = 3, the 4 partitions are:
Square side 1 2 3
            9 0 0
            5 1 0
            1 2 0
            0 0 1
Total      15 3 1
So T(3,1) = 15, T(3,2) = 3, T(3,3) = 1.
The triangle begins:
.\ k    1     2     3     4     5     6     7     8     9 ...
.n
.1      1
.2      4     1
.3     15     3     1
.4     50    11     2     1
.5    156    35    10     4     1
.6    460   101    36    14     4     1
.7   1296   298   105    44    16     6     1
.8   3522   798   300   130    56    23     6     1
.9   9255  2154   827   377   174    82    31     9     1
10  23672  5490  2164  1015   502   243   108    43    10 ...
11  59050 13914  5525  2658  1350   705   343   154    55 ...
		

Crossrefs

Row sums give: A229239.
Cf. A037444.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0 or i=1, 1+n*x, b(n, i-1)+
          `if`(i^2>n, 0, (g->g+coeff(g, x, 0)*x^i)(b(n-i^2, i))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n^2, n)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Sep 24 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1+n*x, b[n, i-1] + If[i^2>n, 0, Function[ {g}, g+Coefficient[g, x, 0]*x^i][b[n-i^2, i]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][ b[n^2, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

Sum_{k=1..n} T(n,k) * k^2 = A037444(n) * n^2.
Showing 1-2 of 2 results.