cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229495 Stirling's approximation constant e / sqrt(2*Pi).

Original entry on oeis.org

1, 0, 8, 4, 4, 3, 7, 5, 5, 1, 4, 1, 9, 2, 2, 7, 5, 4, 6, 6, 1, 1, 5, 7, 7, 3, 1, 3, 4, 2, 2, 9, 4, 7, 9, 8, 5, 8, 3, 9, 5, 9, 6, 9, 3, 1, 9, 6, 4, 7, 2, 6, 2, 6, 8, 2, 2, 5, 1, 3, 4, 3, 4, 7, 1, 2, 2, 8, 7, 5, 1, 4, 7, 9, 6, 2, 6, 9, 0, 0, 2, 4, 9, 9, 0, 3, 4, 7, 1, 6, 8, 2, 8, 8, 4, 8, 4, 7, 5, 3, 1, 5, 2, 3, 6, 6, 7, 9, 3, 9, 1, 9, 7, 3, 4, 9, 3, 6, 4, 3, 5, 3, 4, 7, 6, 8, 3, 8, 1, 5, 4, 1, 3, 1, 9, 5, 6, 3, 3, 6, 6, 3, 3, 4, 2, 9, 5, 1, 9, 7
Offset: 1

Views

Author

John W. Nicholson, Sep 24 2013

Keywords

Examples

			1.0844375514192275466115773134229479858...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.5, pages 2 and 27-28.

Crossrefs

Cf. A001113 (e), A019727 (sqrt(2*Pi)), A001142, A110544.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1)/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 06 2018
  • Maple
    evalf(exp(1)/sqrt(2*Pi),120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[E/Sqrt[2Pi],10,120][[1]] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    exp(1)/sqrt(2*Pi) \\ Ralf Stephan, Sep 26 2013
    

Formula

Equals exp(1)/sqrt(2*Pi).
Equals lim_{n->oo} (A001142(n)^(1/n)*sqrt(n)/(exp(n/2))) (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Equals Product_{n>=1} (1 + 1/n)^(n+1/2)/e. - Amiram Eldar, Jul 08 2023
Equals exp(A110544). - Amiram Eldar, May 30 2025

Extensions

More terms from Ralf Stephan, Sep 26 2013
Corrected and extended by Harvey P. Dale, Jan 21 2017