cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064784 Difference between n-th triangular number t(n) and the largest square <= t(n).

Original entry on oeis.org

0, 2, 2, 1, 6, 5, 3, 0, 9, 6, 2, 14, 10, 5, 20, 15, 9, 2, 21, 14, 6, 28, 20, 11, 1, 27, 17, 6, 35, 24, 12, 44, 32, 19, 5, 41, 27, 12, 51, 36, 20, 3, 46, 29, 11, 57, 39, 20, 0, 50, 30, 9, 62, 41, 19, 75, 53, 30, 6, 66, 42, 17, 80, 55, 29, 2, 69, 42, 14, 84, 56, 27, 100, 71, 41, 10, 87, 56
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 20 2001

Keywords

Comments

The second differences of a(n) - (a(n)-a(n-1))-(a(n-1)-a(n-2)) - give 2, -2, -1, 6, -6, -1, -1, 12, -12, -1, 16, -16, -1 ... 82k+2, 82k-2, -1, 82k+6, 82k-6, -1, -1, 82k+12, 82k-12, -1, 82k+16, -82k-16, -1, 82k+20, -82k-20, -1, -1, 82k+26, -82k-26, -1, 82k+30, -82k-30, -1, -1, 82k+36, -82k-36, -1, 82k+40, -82k-40, -1, 82k+44, -82k-44, -1, -1, 82k+50, -82k-50, -1, 82k+54, -82k-54, -1, -1, 82k+60, -82k-60, -1, 82k+64, -82k-64, -1, -1, 82k+70, -82k-70, -1, 82k+74, -82k-74, -1, 82k+78, -82k-78, -1, -1, ...

Examples

			n = 5: A000217(5) = 28, largest square below that is 25, so a(5) = 28 - 25 = 3.
		

Crossrefs

Cf. A001108, A076816, A128549, A230038. Unique values are in A230044.

Programs

  • Maple
    seq(n*(n+1)/2-floor(sqrt(n*(n+1)/2))^2,n=0..100);
  • Mathematica
    f[n_]:=n*(n+1)/2-Floor[Sqrt[n*(n+1)/2]]^2; lst={}; Do[AppendTo[lst,f[n]],{n,0,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 17 2010 *)
    #-Floor[Sqrt[#]]^2&/@Accumulate[Range[100]] (* Harvey P. Dale, Oct 15 2014 *)
  • PARI
    { default(realprecision, 100); for (n=1, 1000, t=n*(n + 1)/2; a=t - floor(sqrt(t))^2; write("b064784.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 25 2009
    
  • Python
    from math import isqrt
    def A064784(n): return (m:=n*(n+1)>>1)-isqrt(m)**2 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = n*(n+1)/2 - floor(sqrt(n*(n+1)/2))^2.
a(n) = A053186(A000217(n)). - R. J. Mathar, Sep 10 2016
a(A001108(n)) = 0. - Hugo Pfoertner, Jun 01 2024

Extensions

Definition corrected by Harry J. Smith, Sep 25 2009
Terms corrected by Harry J. Smith, Sep 25 2009

A230060 Numbers k such that the distance from k^2 to the smallest triangular number >= k^2 is itself triangular.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 15, 18, 20, 28, 30, 35, 42, 45, 54, 60, 63, 66, 77, 78, 88, 90, 102, 105, 114, 117, 126, 130, 138, 150, 162, 165, 174, 175, 186, 198, 204, 210, 221, 222, 234, 245, 246, 247, 258, 264, 266, 270, 282, 294, 306, 315, 318, 330, 342, 351, 354, 366, 368, 378, 385, 390
Offset: 1

Views

Author

Ralf Stephan, Oct 08 2013

Keywords

Crossrefs

Cf. A230038.

Programs

  • PARI
    is(n)=my(t=floor((sqrt(8*n^2)-1)/2)+1);t=t*(t+1)/2-n^2; my(tt=floor((sqrt(8*t)-1)/2)+1);(tt*(tt+1)/2==t)
Showing 1-2 of 2 results.