A342021 Numbers k such that A003415(sigma(k)) = k, where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.
5, 8, 41, 47057
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Arithmetic derivative of 15 is 8 and sigma(8) = 15.
with(numtheory); P:=proc(q) local n; for n from 1 to q do if n=sigma(n*add(op(2,p)/op(1,p),p=ifactors(n)[2])) then print(n); fi; od; end: P(10^9);
Divisors of 45 are 1, 3, 5, 9, 15, 45 and prime factors 3^2, 5: (1/1 + 1/3 + 1/5 + 1/9 + 1/15 + 1 /45)/(1/3 + 1/3 + 1/5) = 2 Divisors of 119 are 1, 7, 17, 119 and prime factors 7, 17: (1/1 + 1/7 + 1/17 + 1 /119)/(1/7 + 1/17) = 6. Divisors of 552521 are 1, 37, 109, 137, 4033, 5069, 14933, 552521 and prime factors 37, 109, 137: (1/1 + 1/37 + 1/109 + 1/137 + 1 /4033 + 1/5069 + 1/14933 + 1/552521)/(1/37 + 1/109 + 1/137) = 24.
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 2 to q do if not isprime(n) then a:=add(1/a,a=divisors(n)); b:=ifactors(n)[2]; c:=add(b[k][2]/b[k][1],k=1..nops(b)); if frac(a/c)=0 then print(n); fi; fi; od; end: P(10^7);
Select[Range[4, 10^4], And[CompositeQ@ #, IntegerQ[DivisorSigma[1, #]/If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]]]] &] (* Michael De Vlieger, Oct 31 2018 *)
ard(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); \\ A003415 isok(n) = (n>1) && !isprime(n) && (frac(sigma(n)/ard(n)) == 0); \\ Michel Marcus, Oct 30 2018
Divisors of 12 are 1, 2, 3, 4, 6, 12 and 1/1 + 1/2 + 1/3 +1/4 + 1/6 + 1/12 = 7/3. Prime factors of 12 are 2^2, 3 and 1/2 + 1/2 + 1/3 = 4/3. Finally 7/3 - 4/3 = 1 that is an integer.
with(numtheory); P:=proc(q) local a,b,c,k,n; for n from 1 to q do if not isprime(n) then b:=sigma(n)/n; a:=ifactors(n)[2]; c:=add(a[k][2]/a[k][1],k=1..nops(a)); if type(b-c,integer) then lprint(n,b-c); fi; fi; od; end: P(10^6);
ad[1]=0; ad[n_]:=n*Total[(#1[[2]] / #1[[1]]&) /@ FactorInteger[n]]; Select[Range[500000], ad[#] == DivisorSigma[1,#] - EulerPhi[#] &]
Sum of the aliquot parts of 284 is sigma(284) - 284 = 220 and the arithmetic derivative of 220 is 284.~
with(numtheory): P:= proc(q) local a,n,p; for n from 1 to q do a:=(sigma(n)-n)*add(op(2,p)/op(1,p),p=ifactors(sigma(n)-n)[2]); if n=a then print(n); fi; od; end: P(10^9);
ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); isok(n) = ad(sigma(n) - n) == n; \\ Michel Marcus, Oct 28 2014
Comments