cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342021 Numbers k such that A003415(sigma(k)) = k, where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.

Original entry on oeis.org

5, 8, 41, 47057
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2021

Keywords

Comments

a(5) > 2^33, if it exists.
Terms of this sequence and A230165 group into pairs (m, sigma(m)), where m is a term of this sequence and sigma(m) is a term of A230165. - Max Alekseyev, Feb 13 2025

Crossrefs

Fixed points of A342925.
Positions of 0's in A342926.
Subsequence of A343217.

Formula

a(n) = A003415(A230165(n)). - Max Alekseyev, Feb 13 2025

A230165 Numbers k such that k = sigma(k'), where k' is the arithmetic derivative of k.

Original entry on oeis.org

6, 15, 42, 47058
Offset: 1

Views

Author

Paolo P. Lava, Oct 14 2013

Keywords

Comments

a(5) > 10^10. - Giovanni Resta, Oct 14 2013
Terms of this sequence and A342021 group into pairs (m, m'), where m is a term of this sequence and m' is a term of A342021. - Max Alekseyev, Feb 13 2025

Examples

			Arithmetic derivative of 15 is 8 and sigma(8) = 15.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n; for n from 1 to q do
    if n=sigma(n*add(op(2,p)/op(1,p),p=ifactors(n)[2])) then print(n);
    fi; od; end: P(10^9);

Formula

a(n) = sigma(A342021(n)). - Max Alekseyev, Feb 13 2025

A321182 Composite numbers k such that sigma(k)/k' is an integer, where k' is the arithmetic derivative of k.

Original entry on oeis.org

15, 35, 45, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 693, 779, 899, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6811, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1

Views

Author

Paolo P. Lava, Oct 29 2018

Keywords

Comments

Alternative definition: Composite numbers such that the ratio between the sum of the reciprocal of their divisors and the sum of the reciprocal of their prime factors, counted with multiplicity, is an integer.
Mainly squarefree numbers, which are a subset of A242152, apart from some sporadic terms: 45, 693, 6811, 17296, 24016, 71753, 1165669, etc.
A230164 is a subsequence (ratio equal to 1).

Examples

			Divisors of 45 are 1, 3, 5, 9, 15, 45 and prime factors 3^2, 5: (1/1 + 1/3 + 1/5 + 1/9 + 1/15 + 1 /45)/(1/3 + 1/3 + 1/5) = 2
Divisors of 119 are 1, 7, 17, 119 and prime factors 7, 17: (1/1 + 1/7 + 1/17 + 1 /119)/(1/7 + 1/17) = 6.
Divisors of 552521 are 1, 37, 109, 137, 4033, 5069, 14933, 552521 and prime factors 37, 109, 137: (1/1 + 1/37 + 1/109 + 1/137 + 1 /4033 + 1/5069 + 1/14933 + 1/552521)/(1/37 + 1/109 + 1/137) = 24.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 2 to q do if not isprime(n) then a:=add(1/a,a=divisors(n)); b:=ifactors(n)[2]; c:=add(b[k][2]/b[k][1],k=1..nops(b)); if frac(a/c)=0 then print(n); fi; fi; od; end: P(10^7);
  • Mathematica
    Select[Range[4, 10^4], And[CompositeQ@ #, IntegerQ[DivisorSigma[1, #]/If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]]]] &] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    ard(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); \\ A003415
    isok(n) = (n>1) && !isprime(n) && (frac(sigma(n)/ard(n)) == 0); \\ Michel Marcus, Oct 30 2018

A238922 Numbers n such that Sum_{i=1..j} 1/d(i) - Sum_{i=1..k} 1/p(i) is an integer, where p are the prime factors of n, counted with multiplicity, and d its divisors.

Original entry on oeis.org

1, 12, 18, 220, 396, 17296, 24016, 287532, 4661056, 64288512, 334144656, 358585488, 555192576, 568719616, 2172649216, 2451538112, 2645953344, 2955423888, 6704333824, 26996772032, 88734733632, 147861504000, 311063879024, 371226582848, 429391876096
Offset: 1

Views

Author

Paolo P. Lava, Mar 07 2014

Keywords

Comments

A212128 and A230164 are subsets of this sequence.
a(26) > 10^12. - Giovanni Resta, Mar 11 2014

Examples

			Divisors of 12 are 1, 2, 3, 4, 6, 12 and 1/1 + 1/2 + 1/3 +1/4 + 1/6 + 1/12 = 7/3. Prime factors of 12 are 2^2, 3 and 1/2 + 1/2 + 1/3 = 4/3. Finally 7/3 - 4/3 = 1 that is an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do if not isprime(n) then b:=sigma(n)/n;
    a:=ifactors(n)[2]; c:=add(a[k][2]/a[k][1],k=1..nops(a));
    if type(b-c,integer) then lprint(n,b-c); fi; fi; od; end: P(10^6);

Extensions

a(9)-a(10), a(13)-a(17), a(19)-a(25) from Giovanni Resta, Mar 11 2014

A239274 Numbers k such that k' = sigma(k) - phi(k), where k' = A003415(k) is the arithmetic derivative of k.

Original entry on oeis.org

1, 88, 1104, 492624, 30818736, 200827760, 1598249556, 4575586644, 8491046375, 8554970196, 29917317500, 54481242640, 202195886375, 3201891498000
Offset: 1

Views

Author

Giovanni Resta, Mar 13 2014

Keywords

Comments

a(15) > 10^13.

Crossrefs

Programs

  • Mathematica
    ad[1]=0; ad[n_]:=n*Total[(#1[[2]] / #1[[1]]&) /@ FactorInteger[n]]; Select[Range[500000], ad[#] == DivisorSigma[1,#] - EulerPhi[#] &]

A248816 Numbers that are equal to the arithmetic derivative of the sum of their aliquot parts.

Original entry on oeis.org

152, 284, 4316, 18632, 25484, 2657259, 8394752, 12186976, 17702756, 1172473731, 2147581952, 13716855652, 63831498112
Offset: 1

Views

Author

Paolo P. Lava, Oct 15 2014

Keywords

Comments

Solutions of the equations n = (sigma(n)-n)'.
a(12) > 5*10^9. - Michel Marcus, Nov 01 2014
There could be a relation with terms in A125246 and A228450, since some terms of these sequences are here also. - Michel Marcus, Oct 30 2014
a(14) > 10^11. - Giovanni Resta, May 29 2016

Examples

			Sum of the aliquot parts of 284 is sigma(284) - 284 = 220 and the arithmetic derivative of 220 is 284.~
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,n,p; for n from 1 to q do
    a:=(sigma(n)-n)*add(op(2,p)/op(1,p),p=ifactors(sigma(n)-n)[2]);
    if n=a then print(n); fi; od; end: P(10^9);
  • PARI
    ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
    isok(n) = ad(sigma(n) - n) == n; \\ Michel Marcus, Oct 28 2014

Extensions

a(6)-a(11) from Michel Marcus, Oct 28 2014
a(12)-a(13) from Giovanni Resta, May 29 2016
Showing 1-6 of 6 results.