cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230539 a(n) = 3*n*2^(3*n-1).

Original entry on oeis.org

0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2013

Keywords

Comments

Arithmetic derivative of 8^n: a(n) = A003415(8^n).
Sum of reciprocals of a(n), for n>0: (2/3)*log(8/7).

Crossrefs

Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), this sequence, A230540 (k=9), A085708 (k=10), A081127 (k=11).
Row n=8 of A258997.

Programs

  • Magma
    [3*n*2^(3*n-1): n in [0..20]];
    
  • Maple
    A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    Table[3 n 2^(3 n - 1), {n,0,20}]
    LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013

Formula

G.f.: 12*x/(1-8*x)^2.
a(n) = 12*A053539(n).