A230539 a(n) = 3*n*2^(3*n-1).
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
Crossrefs
Programs
-
Magma
[3*n*2^(3*n-1): n in [0..20]];
-
Maple
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Mathematica
Table[3 n 2^(3 n - 1), {n,0,20}] LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
PARI
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
Formula
G.f.: 12*x/(1-8*x)^2.
a(n) = 12*A053539(n).
Comments