A230653 Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).
49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, 21903, 23715, 29583, 30975, 38024, 43263, 58563, 60515, 71824, 74528, 110223, 130321, 136899, 145924, 150543, 154449, 165649, 181475, 216224, 224675, 233288, 243049, 256035, 258063, 265225, 294849, 300303
Offset: 1
Keywords
Examples
99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 90 terms from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &] Position[Differences[DivisorSigma[0,Range[300400]]],3]//Flatten (* Harvey P. Dale, Jun 30 2022 *)
-
PARI
isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ Michel Marcus, Oct 27 2013
-
Python
from sympy import divisor_count as tau from itertools import count, islice def agen(): # generator of terms, using comment by David A. Corneth for m in count(1): mm = m*m tmm = tau(mm) if tmm - tau(mm-1) == 3: yield mm-1 if tau(mm+1) - tmm == 3: yield mm print(list(islice(agen(), 36))) # Michael S. Branicky, Feb 16 2024
Extensions
More terms from Michel Marcus, Oct 27 2013
Comments