cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230653 Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, 21903, 23715, 29583, 30975, 38024, 43263, 58563, 60515, 71824, 74528, 110223, 130321, 136899, 145924, 150543, 154449, 165649, 181475, 216224, 224675, 233288, 243049, 256035, 258063, 265225, 294849, 300303
Offset: 1

Views

Author

Jaroslav Krizek, Oct 27 2013

Keywords

Comments

Numbers k such that A051950(k+1) = 3.
Numbers k such that A049820(k) - A049820(k+1) = 2.
k or k+1 is a perfect square. - David A. Corneth, Feb 16 2024

Examples

			99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.
		

Crossrefs

Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1), A230115 (numbers n such that tau(n+1) - tau(n) = 2), A000005.

Programs

  • Mathematica
    Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &]
    Position[Differences[DivisorSigma[0,Range[300400]]],3]//Flatten (* Harvey P. Dale, Jun 30 2022 *)
  • PARI
    isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ Michel Marcus, Oct 27 2013
    
  • Python
    from sympy import divisor_count as tau
    from itertools import count, islice
    def agen(): # generator of terms, using comment by David A. Corneth
        for m in count(1):
            mm = m*m
            tmm = tau(mm)
            if tmm - tau(mm-1) == 3: yield mm-1
            if tau(mm+1) - tmm == 3: yield mm
    print(list(islice(agen(), 36))) # Michael S. Branicky, Feb 16 2024

Extensions

More terms from Michel Marcus, Oct 27 2013