A230766 Numbers with more than one prime factor and, in the ordered factorization, the exponent never decreases when read from left to right.
6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 50, 51, 54, 55, 57, 58, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 98, 100, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= sort(ifactors(n)[2],(a,b) -> a[1] < b[1]); if nops(F) = 1 then return false fi; F:= F[..,2]; F = sort(F) end proc: select(filter, [$2..200]); # Robert Israel, Feb 07 2025
-
Mathematica
fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Min[Differences[f]] >= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *) Select[Range[150],PrimeNu[#]>1&&Min[Differences[FactorInteger[#][[All,2]]]]>=0&] (* Harvey P. Dale, May 22 2020 *)
-
PARI
isok(n) = {my(f = factor(n), nbf = #f~); if (nbf < 2, return (0)); lastexp = 0; for (i=1, nbf, if ((newexp = f[i, 2]) < lastexp, return (0)); lastexp = newexp;); return (1);} \\ Michel Marcus, Oct 30 2013
Formula
If n = Product_{k=1..m} p(k)^e(k), then m > 1 and e(1) <= e(2) <= ... <= e(m).