A230780 Positive numbers without a prime factor congruent to 1 (mod 6).
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 23, 24, 25, 27, 29, 30, 32, 33, 34, 36, 40, 41, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 58, 59, 60, 64, 66, 68, 69, 71, 72, 75, 80, 81, 82, 83, 85, 87, 88, 89, 90, 92, 94, 96, 99, 100, 101, 102, 106, 107
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 254 terms from Jean-Christophe Hervé)
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- August Lösch, Economics of Location (1954), see pp. 117f.
- U. P. Nair, Elementary results on the binary quadratic form a^2+ab+b^2, arXiv:math/0408107 [math.NT], 2004.
- Index entries for sequences related to A2 = hexagonal = triangular lattice
Crossrefs
Programs
-
Haskell
a230780 n = a230780_list !! (n-1) a230780_list = filter (all (/= 1) . map (flip mod 6) . a027748_row) [1..] -- Reinhard Zumkeller, Apr 09 2014
-
Mathematica
Join[{1}, Select[Range[2, 110], ! MemberQ[Union[Mod[Transpose[ FactorInteger[#]][[1]], 6]], 1] &]] (* T. D. Noe, Nov 24 2013 *) Join[{1},Select[Range[110],NoneTrue[FactorInteger[#][[All,1]],Mod[#,6] == 1&]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 03 2019 *)
-
PARI
is_A230780(n)=!setsearch(Set(factor(n)[,1]%6),1) \\ M. F. Hasler, Mar 04 2018
Formula
A005088(a(n)) = 0.
Comments