A152535 a(n) = n*prime(n) - Sum_{i=1..n} prime(i).
0, 1, 5, 11, 27, 37, 61, 75, 107, 161, 181, 247, 295, 321, 377, 467, 563, 597, 705, 781, 821, 947, 1035, 1173, 1365, 1465, 1517, 1625, 1681, 1797, 2217, 2341, 2533, 2599, 2939, 3009, 3225, 3447, 3599, 3833, 4073, 4155, 4575, 4661
Offset: 1
Examples
From _Omar E. Pol_, Apr 27 2015: (Start) For n = 5 the 5th prime is 11 and the sum of first five primes is 2 + 3 + 5 + 7 + 11 = 28, so a(5) = 5*11 - 28 = 27. Illustration of a(5) = 27: Consider a diagram in the first quadrant of the square grid in which the number of cells in the n-th horizontal bar is equal to the n-th prime, as shown below: . _ _ _ _ _ _ _ _ _ _ _ . 11 |_ _ _ _ _ _ _ _ _ _ _| . 7 |_ _ _ _ _ _ _|* * * * . 5 |_ _ _ _ _|* * * * * * . 3 |_ _ _|* * * * * * * * . 2 |_ _|* * * * * * * * * . a(5) is also the area (or the number of cells, or the number of *'s) under the bar's structure of prime numbers: a(5) = 1 + 4 + 6 + 16 = 27. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Christian Axler, On a sequence involving the prime numbers, arXiv:1504.04467 [math.NT], 2015 and J. Int. Seq. 18 (2015) # 15.7.6.
- Christian Axler, Improving the Estimates for a Sequence Involving Prime Numbers, arXiv:1706.04049 [math.NT], 2017.
Crossrefs
Programs
-
Mathematica
nn = 100; p = Prime[Range[nn]]; Range[nn] p - Accumulate[p] (* T. D. Noe, May 02 2011 *)
-
PARI
vector(80, n, n*prime(n) - sum(k=1, n, prime(k))) \\ Michel Marcus, Apr 20 2015
-
Python
from sympy import prime, primerange def A152535(n): return (n-1)*(p:=prime(n))-sum(primerange(p)) # Chai Wah Wu, Jan 01 2024
-
Sage
[n*nth_prime(n) - sum(nth_prime(j) for j in range(1,n+1)) for n in range(1,45)] # Danny Rorabaugh, Apr 18 2015
Formula
a(n) = Sum_{k=1..n-1} k*A001223(k). - François Huppé, Mar 16 2022
Comments