A231580 a(n) is the numerator of the probability that n segments of length 2, each placed randomly on a line segment of length 2n, will completely cover the line segment.
1, 2, 7, 34, 638, 4876, 220217, 6885458, 569311642, 7515775348, 197394815194, 78863079581996, 886395722771204, 848070074996694008, 222148423805582000341, 33494470531439170224754, 35665304857619152523926, 280147437461017444466304484
Offset: 1
Examples
1, 2/3, 7/15, 34/105, 638/2835, 4876/31185, 220217/2027025, 6885458/91216125, 569311642/10854718875, 7515775348/206239658625, 197394815194/7795859096025, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..260
- Philipp O. Tsvetkov, Stoichiometry of irreversible ligand binding to a one-dimensional lattice, Scientific Reports, Springer Nature (2020) Vol. 10, Article number: 21308.
Crossrefs
Cf. A231634 (denominators).
Programs
-
Maple
A231580f := proc(n) option remember; if n <= 0 then 1; else add(procname(k)*procname(n-k-1),k=0..n-1)/(2*n-1) ; end if; end proc: A231580 := proc(n) numer(A231580f(n)) ; end proc: seq(A231580(n),n=1..30) ; # R. J. Mathar, Aug 28 2014
-
Mathematica
f[g_List, l_] := f[g, l] = Sum[f[g[[;; n]], l] f[g[[n + 1 ;;]], l], {n, Length[g] - 1}]/(Total[l + g] - 2 l + 1); f[{}] = f[{}, _] = 1; f[ConstantArray[0, #], 2] & /@ Range[2, 20] // Numerator
-
PARI
f=[1]; for(n=2, 25, f=concat(f, sum(k=1, n-1, (f[k]*f[n-k])) / (2*n-3))); f vector(#f, k, numerator(f[k])) \\ Colin Barker, Jul 24 2014, for sequence shifted by 1 index
Formula
Numerator of f(n), where f(0)=1 and f(n) = Sum_{k=0..n-1} f(k)*f(n-k-1)/(2*n-1). - Michael Somos, Mar 01 2014
Extensions
Name edited by Jon E. Schoenfield, Nov 13 2018
Comments