cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005114 Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function (A001065).

Original entry on oeis.org

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, 516, 518, 520, 530, 540, 552, 556, 562, 576, 584, 612, 624, 626, 628, 658
Offset: 1

Views

Author

Keywords

Comments

Complement of A078923. - Lekraj Beedassy, Jul 19 2005
Chen & Zhao show that the lower density of this sequence is at least 0.06, improving on te Riele. - Charles R Greathouse IV, Dec 28 2013
Numbers k such that A048138(k) = 0. A048138(k) measures how "touchable" k is. - Jeppe Stig Nielsen, Jan 12 2020
From Amiram Eldar, Feb 13 2021: (Start)
The term "untouchable number" was coined by Alanen (1972). He found the 570 terms below 5000.
Erdős (1973) proved that the lower asymptotic density of untouchable numbers is positive, te Riele (1976) proved that it is > 0.0324, and Banks and Luca (2004, 2005) proved that it is > 1/48.
Pollack and Pomerance (2016) conjectured that the asymptotic density is ~ 0.17. (End)
The upper asymptotic density is less than 1/2 by the 'almost all' binary Goldbach conjecture, independently proved by Nikolai Chudakov, Johannes van der Corput, and Theodor Estermann. (In this context, this shows that the density of the odd numbers of this form is 0 (consider A001065(p*q) for prime p, q); full Goldbach would prove that 5 is the only odd number in this sequence.) - Charles R Greathouse IV, Dec 05 2022

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, section B10, pp. 100-101.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 125.

Crossrefs

Programs

  • Mathematica
    untouchableQ[n_] := Catch[ Do[ If[n == DivisorSigma[1, k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Print[n]; Sow[n]], {n, 2, 700}]][[2, 1]] (* Jean-François Alcover, Jun 29 2012, after Benoit Cloitre *)
  • PARI
    isA078923(n)=if(n==0 || n==1, return(1)); for(m=1,(n-1)^2, if( sigma(m)-m == n, return(1))); 0
    isA005114(n)=!isA078923(n)
    for(n=1,700, if (isA005114(n), print(n))) \\ R. J. Mathar, Aug 10 2006
    
  • PARI
    is(n)=if(n%2 && n<4e18, return(n==5)); forfactored(m=1,(n-1)^2, if(sigma(m)-m[1]==n, return(0))); 1 \\ Charles R Greathouse IV, Dec 05 2022
    
  • Python
    from sympy import divisor_sigma as sigma
    from functools import cache
    @cache
    def f(m): return sigma(m)-m
    def okA005114(n):
        if n < 2: return 0
        return not any(f(m) == n for m in range(1, (n-1)**2+1))
    print([k for k in range(289) if okA005114(k)]) # Michael S. Branicky, Nov 16 2024
    
  • Python
    # faster for intial segment of sequence
    from itertools import count, islice
    from sympy import divisor_sigma as sigma
    def agen(): # generator of terms
        n, touchable, t = 2, {0, 1}, 1
        for m in count(2):
            touchable.add(sigma(m)-m)
            while m > t:
                if n not in touchable:
                    yield n
                else:
                    touchable.discard(n)
                n += 1
                t = (n-1)**2
    print(list(islice(agen(), 20))) # Michael S. Branicky, Nov 16 2024

Extensions

More terms from David W. Wilson

A306952 Lesser member of twin weird numbers: weird numbers n (A006037) such that n+2 is also weird.

Original entry on oeis.org

512468, 540890, 688028, 1390268, 1565828, 1741388, 2268068, 3525410, 3848108, 4374788, 6481508, 6657068, 7534868, 7885988, 7914410, 8089970, 8838968, 9143330, 9290468, 10021130, 10343828, 10898930, 12654530, 12801668, 12872510, 13152788, 13181210, 14234570
Offset: 1

Views

Author

Amiram Eldar, Mar 17 2019

Keywords

Comments

Number of terms below 10^k for k = 6, 7, ... 10: 19, 231, 2111, 22426.
The first occurrences of 2 consecutive pairs of twin weirds are (21607670, 21607672, 21608090, 21608092), (873951608, 873951610, 873951890, 873951892), ...

Examples

			512468 is in the sequence since both 512468 and 512470 are weird numbers.
		

Crossrefs

Cf. A006037, A125109, A231086 (supersequence), A231964.

A231965 Smallest integer starting a group of exactly n consecutive untouchable numbers (A005114) with term differences of 2.

Original entry on oeis.org

246, 288, 892, 9020, 11456, 23480, 52274, 33686, 190070, 1741856, 1668564, 7806762
Offset: 2

Views

Author

Michel Marcus, Nov 16 2013

Keywords

Comments

Such n-tuplets from A005114 correspond to n+1 positive numbers interspersed with n zeros in A070015, and starting at a(n) - 1. For instance, a(4) = 892 is related to A070015(891) and consecutive values: 2661, 0, 4147, 0, 2945, 0, 1287, 0, 9757.

Examples

			a(5) = 9020, because 9020, 9022, 9024, 9026, 9028 are untouchable, while 9018 and 9030 are not so (A001065). For examples with smaller n, see A231964 comments.
		

Crossrefs

Cf. A110875 (analog for sigma(n)).

Programs

  • PARI
    oksucc(v, vi, n) = {for (i = 1, n-1, if (! vecsearch(v, vi+2*i, ) , return (0));); return(! vecsearch(v, vi-2) && !vecsearch(v, vi+2*n));}
    a(n) = {v = readvec("untouchable.log"); for (i=1, #v, vi = v[i]; if (oksucc(v, vi, n), return(vi)););} \\ readvec reads the file obtained by keeping the second column of b005114.txt seen as a csv file.

Extensions

a(10)-a(13) from Donovan Johnson, Nov 16 2013
Definition, data, and Pari script corrected by Michel Marcus with Donovan Johnson, Nov 18 2013

A333100 Even numbers k such that both k and k + 2 are nontotients (A005277).

Original entry on oeis.org

74, 122, 152, 186, 234, 242, 244, 246, 284, 302, 338, 362, 374, 402, 404, 410, 412, 426, 434, 470, 472, 482, 494, 514, 516, 530, 532, 548, 572, 594, 602, 608, 626, 666, 668, 678, 722, 728, 746, 752, 788, 802, 804, 842, 844, 866, 868, 870, 872, 890, 892, 914, 942
Offset: 1

Views

Author

Amiram Eldar, Mar 07 2020

Keywords

Examples

			74 is a term since both 74 and 76 are nontotients.
		

Crossrefs

Programs

  • PARI
    forstep(k=2, 100, 2, if(!istotient(k) && !istotient(k+2), print1(k,", ")))

A333101 Numbers k such that both k and k + 2 are noncototients (A005278).

Original entry on oeis.org

50, 170, 266, 290, 344, 518, 532, 534, 650, 686, 722, 730, 872, 962, 1036, 1158, 1166, 1332, 1394, 1462, 1464, 1586, 1634, 1682, 1804, 1864, 1922, 1946, 1970, 2034, 2072, 2074, 2116, 2134, 2262, 2314, 2316, 2318, 2330, 2420, 2534, 2598, 2666, 2668, 2772, 2822
Offset: 1

Views

Author

Amiram Eldar, Mar 07 2020

Keywords

Examples

			50 is a term since both 50 and 52 are noncototients.
		

Crossrefs

Programs

  • Mathematica
    nmax = 3000; cototientQ[n_?EvenQ] := (x = n; While[test = x - EulerPhi[x] == n ; Not[test || x > 2*nmax], x++]; test); cototientQ[n_?OddQ] = True; nonc = Select[Range[nmax], !cototientQ[#]&]; nonc[[Flatten[Position[Differences[nonc], 2]]]] (* after Jean-François Alcover at A005278 *)

A357323 Numbers k such that k and k+2 are both unitary untouchable numbers (A063948).

Original entry on oeis.org

2, 3, 5, 30756, 34182, 46128, 51816, 56352, 72522, 86640, 88896, 119796, 133062, 133618, 149682, 164290, 207282, 207642, 213636, 245708, 257820, 261156, 279730, 283050, 286356, 286858, 310842, 318060, 327300, 339402, 339612, 349030, 360390, 371820, 377940, 384576, 396090
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2022

Keywords

Comments

Except for k=3, are there any other numbers k such that k, k+2 and k+4 are all unitary untouchable numbers? There are no such numbers below 10^6.

Crossrefs

The unitary version of A231964.
Cf. A063948.

Programs

  • Mathematica
    u = Cases[Import["https://oeis.org/A063948/b063948.txt", "Table"], {, }][[;; , 2]]; Select[u, MemberQ[u, # + 2] &]

A370355 Highly touchable numbers sandwiched between untouchable twin pairs.

Original entry on oeis.org

1681, 5251, 7771, 36961, 39271, 170941, 196351, 360361, 510511, 1009471, 9699691
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2024

Keywords

Comments

Highly touchable numbers k have a record number of solutions x to A001065(x) = k, while untouchable numbers k have no solution to this equation.

Crossrefs

Intersection of A238895 and {A231964(n) + 1};
Similar sequences: A068507, A113839.

Programs

  • Mathematica
    seq[nmax_] := Module[{v = Table[0, {nmax}], i, s = {}, vmax = -1}, Do[i = DivisorSigma[1, n] - n; If[0 < i <= nmax, v[[i]]++], {n, 1, nmax^2}]; Do[If[v[[n]] > vmax, vmax = v[[n]]; If[v[[n - 1]] == 0 && v[[n + 1]] == 0, AppendTo[s, n]]], {n, 2, nmax - 1}]; s]; seq[8000]
Showing 1-7 of 7 results.