A232164 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n.
0, 1, 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, 63685, 139057, 303608, 662888, 1447352, 3160121, 6899745, 15064810, 32892270, 71816436, 156802881, 342360937, 747505396, 1632091412, 3563482500, 7780451037, 16987713169, 37090703118
Offset: 0
Examples
For n=4, a(4)= A232164(3) + A232164(2) + 3*A232164(1) + A232164(0) = 2+1+3*1+0=6.
References
- P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055, 2013
- B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 1 at p. 3.
- Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (1,1,3,1).
Programs
-
Maple
a:=proc(n::nonnegint) if n=0 then return 0: elif n=1 then return 1: elif n=2 then return 1: elif n=3 then return 2: else return a(n-1)+a(n-2)+3*a(n-3)+a(n-4): end if; end proc:
-
Mathematica
CoefficientList[Series[x/(1 - x - x^2 -3 x^3- x^4),{x, 0, 30}], x] (* Vincenzo Librandi, Dec 31 2013 *)
-
PARI
Vec(-x/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013
Formula
From Colin Barker, Dec 31 2013: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x/(x^4 + 3*x^3 + x^2 + x - 1). (End)
Comments