A232248 Denominators of the expected length of a random cycle in a random permutation.
1, 2, 12, 24, 720, 1440, 60480, 4480, 3628800, 1036800, 479001600, 958003200, 2615348736000, 172204032, 2414168064000, 62768369664000, 2462451425280000, 9146248151040000, 51090942171709440000, 136216903680000, 33720021833328230400000, 67440043666656460800000
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..250
Crossrefs
Numerators are A232193.
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j *b(n-i*j, i-1) *x^j, j=0..n/i)))) end: a:= n->denom((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!): seq(a(n), n=1..30); # Alois P. Heinz, Nov 21 2013 # second Maple program: a:= n-> denom(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!): seq(a(n), n=1..30); # Alois P. Heinz, Nov 23 2013
-
Mathematica
Table[Denominator[Total[Map[Total[#]!/Product[#[[i]],{i,1,Length[#]}]/Apply[Times,Table[Count[#,k]!,{k,1,Max[#]}]]/(Total[#]-1)!/Length[#]&,Partitions[n]]]],{n,1,25}]
Formula
a(n) = Denominator( 1/(n-1)! * Sum_{i=1..n} A132393(n,i)/i ). - Alois P. Heinz, Nov 23 2013