cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232193 Numerators of the expected value of the length of a random cycle in a random n-permutation.

Original entry on oeis.org

1, 3, 23, 55, 1901, 4277, 198721, 16083, 14097247, 4325321, 2132509567, 4527766399, 13064406523627, 905730205, 13325653738373, 362555126427073, 14845854129333883, 57424625956493833, 333374427829017307697, 922050973293317, 236387355420350878139797
Offset: 1

Views

Author

Geoffrey Critzer, Nov 20 2013

Keywords

Comments

In this experiment we randomly select (uniform distribution) an n-permutation and then randomly select one of the cycles from that permutation. Cf. A102928/A175441 which gives the expected cycle length when we simply randomly select a cycle.

Examples

			Expectations for n=1,... are 1/1, 3/2, 23/12, 55/24, 1901/720, 4277/1440, 198721/60480, 16083/4480, ... = A232193/A232248
For n=3 there are 6 permutations.  We have probability 1/6 of selecting (1)(2)(3) and the cycle size is 1.  We have probability 3/6 of selecting a permutation with cycle type (1)(23) and (on average) the cycle length is 3/2.  We have probability 2/6 of selecting a permutation of the form (123) and the cycle size is 3.  1/6*1 + 3/6*3/2 + 2/6*3 = 23/12.
		

Crossrefs

Denominators are A232248.
Cf. A028417(n)/n! the expected value of the length of the shortest cycle in a random n-permutation.
Cf. A028418(n)/n! the expected value of the length of the longest cycle in a random n-permutation.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j
          *b(n-i*j, i-1) *x^j, j=0..n/i))))
        end:
    a:= n->numer((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!):
    seq(a(n), n=1..30);  # Alois P. Heinz, Nov 21 2013
    # second Maple program:
    a:= n-> numer(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!):
    seq(a(n), n=1..30);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    Table[Numerator[Total[Map[Total[#]!/Product[#[[i]],{i,1,Length[#]}]/Apply[Times,Table[Count[#,k]!,{k,1,Max[#]}]]/(Total[#]-1)!/Length[#]&,Partitions[n]]]],{n,1,25}]

Formula

a(n) = Numerator( 1/(n-1)! * Sum_{i=1..n} A132393(n,i)/i ). - Alois P. Heinz, Nov 23 2013
a(n) = numerator(Sum_{k=0..n} A002657(k)/A091137(k)) (conjectured). - Michel Marcus, Jul 19 2019

A266581 Numerators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.

Original entry on oeis.org

1, 15, 1145, 7795, 10605889, 59526571, 139954552433, 34217723087, 806539298609929, 3932874930141827, 4100492004734957581, 96658551584623754987, 838219558485468722155050481, 142916593419748754034403361, 158366688967470905539833679601, 102317913027622943383626250477
Offset: 0

Views

Author

Ilya Gutkovskiy, May 07 2016

Keywords

Comments

Numerators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).
Numerators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).

Examples

			1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, …
		

Crossrefs

Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).
Cf. A000330, A007406, A007407, A273698 (denominators).

Programs

  • Mathematica
    Table[Numerator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]

A273698 Denominators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.

Original entry on oeis.org

1, 4, 144, 576, 518400, 2073600, 3657830400, 696729600, 13168189440000, 52672757760000, 45888506560512000, 917770131210240000, 6840049010896797696000000, 1013340594206932992000000, 984967057569138868224000000, 562838318610936496128000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 28 2016

Keywords

Comments

Denominators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).
Denominators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).

Examples

			1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, ...
		

Crossrefs

Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).
Cf. A000330, A007406, A007407, A266581 (numerators).

Programs

  • Mathematica
    Table[Denominator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]
Showing 1-3 of 3 results.