A232397 a(n) = ceiling(sqrt(n^4 + n^3 + n^2 + n + 1))^2 - (n^4 + n^3 + n^2 + n + 1).
0, 4, 5, 0, 20, 3, 45, 8, 80, 15, 125, 24, 180, 35, 245, 48, 320, 63, 405, 80, 500, 99, 605, 120, 720, 143, 845, 168, 980, 195, 1125, 224, 1280, 255, 1445, 288, 1620, 323, 1805, 360, 2000, 399, 2205, 440, 2420, 483, 2645, 528, 2880, 575, 3125, 624, 3380, 675
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10001
- Max Alekseyev, Re: oddness of iterations of sigma(), SeqFan Mailing List.
Programs
-
Magma
[Ceiling(Sqrt(n^4+n^3+n^2+n+1))^2-(n^4+n^3+n^2+n+1): n in [0..60]]; // Vincenzo Librandi, Jan 31 2016
-
Maple
0, 4, seq(op([5*k^2, k^2-1]),k=1..100); # Robert Israel, Feb 02 2016
-
Mathematica
Table[Ceiling[Sqrt[n^4 + n^3 + n^2 + n + 1]]^2 - (n^4 + n^3 + n^2 + n + 1), {n, 0, 60}] (* Vincenzo Librandi, Jan 31 2016 *)
-
Python
from math import isqrt def A232397(n): return (1+isqrt(m:=n*(n*(n*(n+1)+1)+1)))**2-m-1 # Chai Wah Wu, Jul 29 2022
Formula
a(1) = 4, for other odd n, a(n) = ((n-1)/2)^2 - 1; for even n>=0, a(n) = 5/4 * n^2.
a(n) = A068527(A053699(n)). [Straight from the description: Difference between smallest square >= (n^4 + n^3 + n^2 + n + 1) and (n^4 + n^3 + n^2 + n + 1)]. - Antti Karttunen, Nov 28 2013
a(n) = (6*n^2-2*n-3+(4*n^2+2*n+3)*(-1)^n+20*(1-(-1)^(2^abs(n-1))))/8. - Luce ETIENNE, Jan 30 2016
G.f.: 4*x+x^2*(x^5-3*x^3-5*x^2-5)/(x^2-1)^3. - Robert Israel, Feb 02 2016
Extensions
More terms from Peter J. C. Moses
Comments