cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232448 Indices of Belphegor primes: numbers k such that the decimal number 1 0...0(k 0's) 666 0...0(k 0's) 1 (i.e., A232449(k)) is prime.

Original entry on oeis.org

0, 13, 42, 506, 608, 2472, 2623, 28291, 181298
Offset: 1

Views

Author

Stanislav Sykora, Nov 24 2013

Keywords

Comments

The resulting primes might be called Belphegor primes, after Pickover (see link). - N. J. A. Sloane, Dec 14 2015
I suspect the larger numbers only correspond to probable primes. - N. J. A. Sloane, Oct 16 2018
The numbers correspond to proven primes for n <= 9. - Jens Kruse Andersen, Mar 25 2021

Examples

			0 is in the sequence because A232449(0) = 16661 is prime.
13 is in the sequence because A232449(13) = 1000000000000066600000000000001 is prime.
For k = 1..12, A232449(k) is composite.
42 is in the sequence because 10000000000000000000000000000000000000000006660000000000000000000000000000\
000000000000001 is a (probable) prime. - _N. J. A. Sloane_, Oct 16 2018
		

Crossrefs

Cf. A232449 (Belphegor numbers), A232450, A232451.
Cf. A156166 (= a(n) + 1).

Programs

  • Mathematica
    lst = {}; Do[p = 10^(2*n + 4) + 666*10^(n + 1) + 1; If[PrimeQ[p], Print[n]], {n, 0, 3000}]; (* Nathaniel Johnston, Nov 25 2013 *)
  • PARI
    default(factor_proven,1);
    Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1;
    for (an=0,10000,
      if (isprime(Belphegor(an)),print("Found: ",an),
          if (an%100==0,print("Tested up to: ",an)))
    );

Formula

a(n) = A156166(n) - 1.

Extensions

a(9) based on A156166 from Eric W. Weisstein, Jan 24 2017
Offset changed to 1 by Jon E. Schoenfield, Mar 23 2021

A232451 Number of prime divisors of (10^(n+3) + 666)*10^(n+1) + 1 (see A232449) counted with multiplicity.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 4, 2, 5, 5, 4, 3, 1, 2, 3, 6, 4, 3, 6, 4, 2, 4, 5, 2, 4, 3, 6, 7, 7, 4, 3, 2, 4, 5, 3, 4, 7, 4, 6, 6, 4, 1, 4, 5, 4, 6, 6, 5, 3, 6, 4, 6, 6, 4, 11, 6, 6, 6, 4, 5, 5, 2, 6, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 24 2013

Keywords

Comments

The Belphegor numbers (A232449), though large and rarely prime (A232448), tend to contain only very few prime factors. One wonders whether this sequence might be bounded.
From Robert Israel, Feb 23 2017: (Start)
The sequence is unbounded.
Indeed, if p is in A001913 such that the polynomial 10^4 x^2 + 6660 x + 1 has a simple root mod p, then for all k there exist Belphegor numbers divisible by p^k.
For example, p=29 works; we have A232449(n) divisible by 29^k for n = 6, 158, 5522, 41570, 8153130, 107172470, 3553045502, 136793469406, 2761185750502, 142830181379582, ...
(End)

Crossrefs

Cf. A001913, A232448 (indices of Belphegor primes), A232449 (Belphegor numbers), A232450 (largest prime factor of A232449(n)).

Programs

  • Magma
    [&+[p[2]: p in Factorization(666*10^(n+1)+100^(n+2)+1)]: n in [0..40]]; // Bruno Berselli, Nov 27 2013
  • Maple
    seq(numtheory:-bigomega(10^(2*n+4)+666*10^(n+1)+1), n=0..30); # Robert Israel, Feb 23 2017
  • Mathematica
    Table[Total[Transpose[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1]][[2]]], {n, 0, 25}] (* T. D. Noe, Nov 28 2013 *)
  • PARI
    a(n)=bigomega(10^(n+1)*(10^(n+3)+666)+1) \\ Charles R Greathouse IV, Nov 26 2013
    

Extensions

a(45)-a(64) from Amiram Eldar, Apr 11 2020

A232450 Largest prime factor of the Belphegor number B(n) = (10^(n+3) + 666)*10^(n+1) + 1.

Original entry on oeis.org

16661, 1103, 1417831, 1143749, 14282381, 11699423, 1950071, 7503425119, 3837692792387, 145857793, 76607717987, 1755833757671518620617, 17416012536871141, 1000000000000066600000000000001, 16540928199996367, 744657085412168192717253704669
Offset: 0

Views

Author

Stanislav Sykora, Nov 24 2013

Keywords

Comments

The Belphegor numbers (A232449), though not often prime themselves (see A232448), tend to contain very large prime factors and are therefore hard to factorize.

Crossrefs

Cf. A232448 (indices of Belphegor primes), A232449 (Belphegor numbers).

Programs

  • Mathematica
    Table[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1][[-1, 1]], {n, 20}] (* T. D. Noe, Nov 25 2013 *)
  • PARI
    default(factor_proven,1);
    Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1;
    LargestPrimeFactor(k)={local(f);f=factor(k);return(f[#f[,1],1])};
    nmax=40; v=vector(nmax);
    for (n=0,#v-1,v[n+1]=LargestPrimeFactor(Belphegor(n));print(v[n+1]))
Showing 1-3 of 3 results.