A232570 Numbers k that divide tribonacci(k) (A000073(k)).
1, 8, 16, 19, 32, 47, 53, 64, 103, 112, 128, 144, 155, 163, 192, 199, 208, 221, 224, 256, 257, 269, 272, 299, 311, 368, 397, 401, 419, 421, 448, 499, 512, 587, 599, 617, 640, 683, 757, 768, 773, 784, 863, 883, 896, 907, 911, 929, 936, 991, 1021, 1024
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(LinearAlgebra[Modular]): T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>, <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]: a:= proc(n) option remember; local k; if n=1 then 1 else for k from 1+a(n-1) while T(k$2)>0 do od; k fi end: seq(a(n), n=1..70); # Alois P. Heinz, Feb 05 2018
-
Mathematica
trib = LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 2000]; Reap[Do[If[Divisible[ trib[[n+1]], n], Print[n]; Sow[n]], {n, 1, Length[trib]-1}]][[2, 1]] (* Jean-François Alcover, Mar 22 2019 *)
-
Ruby
require 'matrix' def power(a, n, mod) return Matrix.I(a.row_size) if n == 0 m = power(a, n >> 1, mod) m = (m * m).map{|i| i % mod} return m if n & 1 == 0 (m * a).map{|i| i % mod} end def f(m, n) ary0 = Array.new(m, 0) ary0[0] = 1 v = Vector.elements(ary0) ary1 = [Array.new(m, 1)] (0..m - 2).each{|i| ary2 = Array.new(m, 0) ary2[i] = 1 ary1 << ary2 } a = Matrix[*ary1] mod = n (power(a, n, mod) * v)[m - 1] end def a(n) (1..n).select{|i| f(3, i) == 0} end
Comments