cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232570 Numbers k that divide tribonacci(k) (A000073(k)).

Original entry on oeis.org

1, 8, 16, 19, 32, 47, 53, 64, 103, 112, 128, 144, 155, 163, 192, 199, 208, 221, 224, 256, 257, 269, 272, 299, 311, 368, 397, 401, 419, 421, 448, 499, 512, 587, 599, 617, 640, 683, 757, 768, 773, 784, 863, 883, 896, 907, 911, 929, 936, 991, 1021, 1024
Offset: 1

Views

Author

Seiichi Manyama, Jun 17 2016

Keywords

Comments

Inspired by A023172 (numbers k such that k divides Fibonacci(k)).
Includes all primes p such that x^3-x^2-x-1 has 3 distinct roots in the field GF(p) (A106279). - Robert Israel, Feb 07 2018
Includes 2^k for k >= 3. - Robert Israel, Jul 26 2024

Crossrefs

Programs

  • Maple
    with(LinearAlgebra[Modular]):
    T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>,
        <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]:
    a:= proc(n) option remember; local k; if n=1
          then 1 else for k from 1+a(n-1)
          while T(k$2)>0 do od; k fi
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    trib = LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 2000]; Reap[Do[If[Divisible[ trib[[n+1]], n], Print[n]; Sow[n]], {n, 1, Length[trib]-1}]][[2, 1]] (* Jean-François Alcover, Mar 22 2019 *)
  • Ruby
    require 'matrix'
    def power(a, n, mod)
      return Matrix.I(a.row_size) if n == 0
      m = power(a, n >> 1, mod)
      m = (m * m).map{|i| i % mod}
      return m if n & 1 == 0
      (m * a).map{|i| i % mod}
    end
    def f(m, n)
      ary0 = Array.new(m, 0)
      ary0[0] = 1
      v = Vector.elements(ary0)
      ary1 = [Array.new(m, 1)]
      (0..m - 2).each{|i|
        ary2 = Array.new(m, 0)
        ary2[i] = 1
        ary1 << ary2
      }
      a = Matrix[*ary1]
      mod = n
      (power(a, n, mod) * v)[m - 1]
    end
    def a(n)
      (1..n).select{|i| f(3, i) == 0}
    end