A274518 Numbers k such that k^2 divides A000073(k).
1, 103, 112, 2621, 30576, 77168, 694512, 9919728, 24770928, 55638128, 57268848, 80995824, 1300820976
Offset: 1
Examples
tribonacci(103) = 331800673921785084815380861 = 103^2 * 31275395788649739354829.
Programs
-
Ruby
require 'matrix' def power(a, n, mod) return Matrix.I(a.row_size) if n == 0 m = power(a, n >> 1, mod) m = (m * m).map{|i| i % mod} return m if n & 1 == 0 (m * a).map{|i| i % mod} end def f(m, n, mod) ary0 = Array.new(m, 0) ary0[0] = 1 v = Vector.elements(ary0) ary1 = [Array.new(m, 1)] (0..m - 2).each{|i| ary2 = Array.new(m, 0) ary2[i] = 1 ary1 << ary2 } a = Matrix[*ary1] (power(a, n, mod) * v)[m - 1] end p (1..10 ** 6).select{|i| f(3, i, i * i) == 0}
Extensions
a(9)-a(13) from Chai Wah Wu, Jan 29 2018
Comments