cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232598 T(n,k) = Stirling2(n,k) * OrderedBell(k).

Original entry on oeis.org

1, 1, 3, 1, 9, 13, 1, 21, 78, 75, 1, 45, 325, 750, 541, 1, 93, 1170, 4875, 8115, 4683, 1, 189, 3913, 26250, 75740, 98343, 47293, 1, 381, 12558, 127575, 568050, 1245678, 1324204, 545835, 1, 765, 39325, 582750, 3760491, 12391218, 21849366, 19650060, 7087261
Offset: 1

Views

Author

Tilman Piesk, Nov 26 2013

Keywords

Comments

T(n,k) is the number of preferential arrangements of the k-part partitions of the set {1...n}.
2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and use k variables, but don't include a negator.
4*T(n,k) is the number of such formulas that may include an negator.
The entries T(n,n) are A000670(n), i.e. the ordered Bell numbers.

Examples

			Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
Compare descriptions of A083355 and A233357.
a(3,1) = 1:
{1,2,3}
a(3,2) = 9:
{1,2}{3}
{1,3}{2}
{2,3}{1}
{1,2}:{3}   {3}:{1,2}
{1,3}:{2}   {2}:{1,3}
{2,3}:{1}   {1}:{2,3}
a(3,3) = 13:
{1}{2}{3}
{1}{2}:{3}   {3}:{1}{2}
{1}{3}:{2}   {2}:{1}{3}
{2}{3}:{1}   {1}:{2}{3}
{1}:{2}:{3}
{1}:{3}:{2}
{2}:{1}:{3}
{2}:{3}:{1}
{3}:{1}:{2}
{3}:{2}:{1}
Triangle begins:
     k = 1   2     3      4      5       6       7      8          sums
n
1        1                                                            1
2        1   3                                                        4
3        1   9    13                                                 23
4        1  21    78     75                                         175
5        1  45   325    750    541                                 1662
6        1  93  1170   4875   8115    4683                        18937
7        1 189  3913  26250  75740   98343   47293               251729
8        1 381 12558 127575 568050 1245678 1324204 545835       3824282
		

Crossrefs

A008277 (Stirling2), A000670 (ordered Bell), A068156 (column k=2), A083355 (row sums: number of preferential arrangements), A233357 (number of preferential arrangements by number of levels).

Formula

T(n,k) = A008277(n,k) * A000670(k).
T(n,n) = A000670(n).
T(n,2) = A068156(n-1).
From Peter Bala, Nov 27 2013: (Start)
E.g.f.: 1/( 2 - exp(x*(exp(t) - 1)) ) = 1 + x*t + (x + 3*x^2)*t^2/2! + (x + 9*x^2 + 13*x^3)*t^3/3! + ....
Recurrence equation (for entries not on main diagonal): (n - k)*T(n,k) = C(n,1)*T(n-1,k) - C(n,2)*T(n-2,k) + C(n,3)*T(n-3,k) - ... (End)