A232598 T(n,k) = Stirling2(n,k) * OrderedBell(k).
1, 1, 3, 1, 9, 13, 1, 21, 78, 75, 1, 45, 325, 750, 541, 1, 93, 1170, 4875, 8115, 4683, 1, 189, 3913, 26250, 75740, 98343, 47293, 1, 381, 12558, 127575, 568050, 1245678, 1324204, 545835, 1, 765, 39325, 582750, 3760491, 12391218, 21849366, 19650060, 7087261
Offset: 1
Examples
Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level. Compare descriptions of A083355 and A233357. a(3,1) = 1: {1,2,3} a(3,2) = 9: {1,2}{3} {1,3}{2} {2,3}{1} {1,2}:{3} {3}:{1,2} {1,3}:{2} {2}:{1,3} {2,3}:{1} {1}:{2,3} a(3,3) = 13: {1}{2}{3} {1}{2}:{3} {3}:{1}{2} {1}{3}:{2} {2}:{1}{3} {2}{3}:{1} {1}:{2}{3} {1}:{2}:{3} {1}:{3}:{2} {2}:{1}:{3} {2}:{3}:{1} {3}:{1}:{2} {3}:{2}:{1} Triangle begins: k = 1 2 3 4 5 6 7 8 sums n 1 1 1 2 1 3 4 3 1 9 13 23 4 1 21 78 75 175 5 1 45 325 750 541 1662 6 1 93 1170 4875 8115 4683 18937 7 1 189 3913 26250 75740 98343 47293 251729 8 1 381 12558 127575 568050 1245678 1324204 545835 3824282
Links
- Tilman Piesk, First 100 rows, flattened
- Tilman Piesk, Preferential arrangements of set partitions (Wikiversity)
Crossrefs
Formula
T(n,n) = A000670(n).
T(n,2) = A068156(n-1).
From Peter Bala, Nov 27 2013: (Start)
E.g.f.: 1/( 2 - exp(x*(exp(t) - 1)) ) = 1 + x*t + (x + 3*x^2)*t^2/2! + (x + 9*x^2 + 13*x^3)*t^3/3! + ....
Recurrence equation (for entries not on main diagonal): (n - k)*T(n,k) = C(n,1)*T(n-1,k) - C(n,2)*T(n-2,k) + C(n,3)*T(n-3,k) - ... (End)
Comments