cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083355 Number of preferential arrangements for the set partitions of the n-set [1,2,3,...,n].

Original entry on oeis.org

1, 1, 4, 23, 175, 1662, 18937, 251729, 3824282, 65361237, 1241218963, 25928015368, 590852003947, 14586471744301, 387798817072596, 11046531316503163, 335640299372252595, 10835556229612637150, 370383732831919278037, 13363914680277923634517
Offset: 0

Views

Author

Thomas Wieder, Jun 11 2003, May 07 2008

Keywords

Comments

Labeled analog of A055887. See combstruct commands for more precise definition.
Stirling transform of A000670(n) = [1,3,13,75,...] is a(n) = [1,4,23,175,...]. - Michael Somos, Mar 04 2004
Row sums of A232598. So 2*a(n) is the number of formulas in first-order logic that have an n-place predicate, and don't include a negator. - Tilman Piesk, Nov 28 2013

Examples

			Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
n=2 gives A083355(2)=4 because we have {1,2} {1}{2} {1}:{2} {2}:{1}.
n=3 gives A083355(3)=23 because we have:
  {1,2,3}
  {1,2}{3} {1,2}:{3} {3}:{1,2}
  {1,3}{2} {1,3}:{2} {2}:{1,3}
  {2,3}{1} {2,3}:{1} {1}:{2,3}
  {1}{2}{3}
  {1}:{2}:{3}
  {3}:{1}:{2}
  {2}:{3}:{1}
  {1}:{3}:{2}
  {2}:{1}:{3}
  {3}:{2}:{1}
  {1}{2}:{3} {1}{3}:{2} {2}{3}:{1}
  {1}:{2}{3} {2}:{1}{3} {3}:{1}{2}.
Examples for the unlabeled case A055887:
n=2 gives A055887(2)=3 because {1,1} {{1}:{1}} {2}
n=3 gives A055887(3)=8 because {1,1,1} {{1}:{1,1}} {{1,1}:{1}} {{1}:{1}:{1}} {1,2} {{1}:{2}} {{2}:{1}} {3}.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SeqSetSetL := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >= 1)},labeled]; A083355 := n-> count(SeqSetSetL,size=n);
    A083355 := proc(n::integer) #with(combinat); local a,i,j; a:=0; for i from 1 to n do for j from 1 to i do a := a + j!*stirling2(i,j)*stirling2(n,i); od; od; print("n, a(n): ",n, a); end proc; # Thomas Wieder
    A083355 := proc() local a,k,n; for n from 1 to 12 do a[n]:=0: for k from 1 to n do a[n]:=a[n]+stirling2(n,k)*A000670(k): od: od: print(a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10],a[11],a[12]); end proc; A000670 := proc(n) local Result,k; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*k! od: end proc;
  • Mathematica
    Range[0, 18]!CoefficientList[Series[1/(2 - E^(E^x - 1)), {x, 0, 18}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    a[n_] := Sum[StirlingS2[n, k] PolyLog[-k, 1/2]/2, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(1/(2-exp(exp(x+x*O(x^n))-1)),n))

Formula

E.g.f.: 1/(2-exp(exp(x)-1)).
Representation as a double infinite series (Dobinski-type formula): a(n) = (1/2)*Sum_{k>=1} (k^n/k!)*Sum_{p>=1} p^k/(2*exp(1))^p, n >= 1. - Karol A. Penson and Pawel Blasiak (blasiak(AT)lptl.jussieu.fr), Nov 30 2003
a(n) ~ n!/(2 * c * (log c)^(n+1)) where c = 1 + log 2.
a(n) = Sum_{k=1..n} C(n, k)*Bell(k)*a(n-k). - Vladeta Jovovic, Jul 24 2003
a(n) = Sum_{i=1..n} Sum_{j=1..i} j!*Stirling2(i,j)*Stirling2(n,i). - Thomas Wieder, May 09 2005
a(n) = Sum_{k=1..n} S2(n,k) A000670(k).
a(n) = Sum_{k >= 0} Bell(n,k)/2^(k+1), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n,k)*x^k denotes the n-th Bell or exponential polynomial. - Peter Bala, Jul 09 2014

A233357 Triangle read by rows: T(n,k) = ((Stirling2)^2)(n,k) * k!

Original entry on oeis.org

1, 2, 2, 5, 12, 6, 15, 64, 72, 24, 52, 350, 660, 480, 120, 203, 2024, 5670, 6720, 3600, 720, 877, 12460, 48552, 83160, 71400, 30240, 5040, 4140, 81638, 424536, 983808, 1201200, 806400, 282240, 40320
Offset: 1

Views

Author

Tilman Piesk, Dec 07 2013

Keywords

Comments

T(n,k) is the number of preferential arrangements with k levels of partitions of the set {1...n}.
2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and k runs of A's and E's (universal and existential quantifiers, compare runs of 0's ans 1's counted by A005811), but don't include a negator.
4*T(n,k) is the number of such formulas that may include an negator.
T(n,k) is the number of partitions of an n-set into colored blocks, such that exactly k colors are used. T(3,2) = 12: 1a|23b, 1b|23a, 13a|2b, 13b|2a, 12a|3b, 12b|3a, 1a|2a|3b, 1b|2b|3a, 1a|2b|3a, 1b|2a|3b, 1a|2b|3b, 1b|2a|3a. - Alois P. Heinz, Sep 01 2019

Examples

			Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
Compare descriptions of A083355 and A232598.
a(3,1)=5:
{1,2,3}
{1,2}{3}
{1,3}{2}
{2,3}{1}
{1}{2}{3}
a(3,2)=12:
{1,2}:{3}   {3}:{1,2}
{1,3}:{2}   {2}:{1,3}
{2,3}:{1}   {1}:{2,3}
{1}{2}:{3}   {3}:{1}{2}
{1}{3}:{2}   {2}:{1}{3}
{2}{3}:{1}   {1}:{2}{3}
a(3,3)=6:
{1}:{2}:{3}
{1}:{3}:{2}
{2}:{1}:{3}
{2}:{3}:{1}
{3}:{1}:{2}
{3}:{2}:{1}
Triangle begins:
       k = 1     2      3      4       5      6      7     8           sums
1          1                                                              1
2          2     2                                                        4
3          5    12      6                                                23
4         15    64     72     24                                        175
5         52   350    660    480     120                               1662
6        203  2024   5670   6720    3600    720                       18937
7        877 12460  48552  83160   71400  30240   5040               251729
8       4140 81638 424536 983808 1201200 806400 282240 40320        3824282
		

Crossrefs

A008277 (Stirling2), A039810 (square of Stirling2), A000110 (Bell), A000142 (factorials), A083355 (row sums: number of preferential arrangements), A232598 (number of preferential arrangements by number of blocks).
Cf. A130191.

Formula

S2 = A008277 (Stirling numbers of the second kind).
(S2)^2 = A039810 (matrix square of S2).
T(n,k) = ((S2)^2)(n,k) * k! = Sum(k<=i<=n) [ S2(n,i) * S2(i,k) ] * k!.
T(n,1) = Bell(n) = A000110(n).
T(n,2) = A052896(n).
T(n,n) = n! = A000142(n).
T(n,n-1) = n!*(n-1) = A062119(n).
Showing 1-2 of 2 results.