A267969 Conjectured list of positive numbers k such that the Collatz-like map T: if x > 1 and x odd, x -> 5*x+1 and, if x even, x -> x/2, when started at k, eventually reaches a cycle that does not contain 1 (cf. A232711).
5, 10, 13, 17, 20, 26, 27, 33, 34, 40, 43, 52, 54, 66, 68, 80, 83, 86, 104, 105, 108, 132, 136, 160, 166, 172, 181, 185, 208, 210, 211, 215, 216, 245, 263, 264, 269, 272, 275, 320, 329, 332, 344, 362, 370, 416, 420, 422, 430, 432, 435, 453, 457, 463, 490, 526
Offset: 1
Keywords
Links
- Dmitry Kamenetsky, Table of n, a(n) for n = 1..2051
Programs
-
Maple
f:= proc(m,b,n) if n mod 2 = 1 then return m*n+1 else return n/2 fi end proc F:= proc(m,b,n,i) option remember; if i=1 then return f(m,b,n) else return f(m,b,F(m,b,n,i-1)) fi end proc for x from 1 to 1000 do for y from 1 to 1000 do if F(5,1,x,y)= 86 or F(5,1,x,y)=26 then print(x): x=x+1; y:=y+1 fi od od # use print(x,y) to give the number of iterations needed to reach the cycle point # Gary Detlefs, Jan 25 2022
Extensions
Entry revised by N. J. A. Sloane, Jan 23 2016
a(16)-a(55) added by Gary Detlefs, Jan 25 2022
Comments