A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).
1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0
Examples
0.195090322016128267848284868477022240927691617751954807754502...
Links
Crossrefs
Programs
-
Magma
R:= RealField(116); Sin(Pi(R)/16); // G. C. Greubel, Sep 20 2022
-
Mathematica
RealDigits[Sin[Pi/16],10,120][[1]] (* Harvey P. Dale, Sep 01 2018 *)
-
PARI
imag(I^(1/8)) \\ Seiichi Manyama, Apr 04 2021
-
PARI
sin(Pi/16) \\ Seiichi Manyama, Apr 04 2021
-
PARI
sqrt(2-sqrt(2+sqrt(2)))/2 \\ Seiichi Manyama, Apr 04 2021
-
SageMath
numerical_approx(sin(pi/16), digits=116) # G. C. Greubel, Sep 20 2022
Formula
Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.
Comments