A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.
1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1
References
- Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
- M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
- Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..3001 from T. D. Noe)
- Steven R. Finch, Class number theory, 2005. [Cached copy, with permission of the author]
- Britta Habdank-Eichelsbacher, Unimodulare Gitter über Reell-Quadratischen Zahlkörpern, Ergänzungsreihe 95-005, Univ. Bielefeld, 1995. See Section 4.2.
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Fundamental Discriminant.
- Eric Weisstein's World of Mathematics, Class Number.
Crossrefs
Programs
-
Mathematica
fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *) Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &] (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *) max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
-
PARI
v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
-
PARI
list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
-
Sage
def is_fundamental(d): r = d % 4 if r > 1 : return False if r == 1: return (d != 1) and is_squarefree(d) q = d // 4 return is_squarefree(q) and (q % 4 > 1) [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018
Formula
Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022
Extensions
More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001
Comments