A233247 Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).
1, 1, 1, 4, 9, 16, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081, 33825095056
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael A. Allen and Kenneth Edwards, Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices, Lin. Multilin. Alg. 72:13 (2024) 2091-2103.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], 2014, see eq. (39).
- Index entries for linear recurrences with constant coefficients, signature (1,1,3,1,-1,-1).
Crossrefs
Cf. A000930.
Programs
-
Maple
A233247 := proc(n) A000930(n)^2 ; end proc: # second Maple program: a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[3, 3]^2: seq(a(n), n=0..40); # Alois P. Heinz, Dec 06 2013
-
Mathematica
Table[Sum[Binomial[n-2i, i], {i,0,n/3}]^2, {n,0,50}] (* Wesley Ivan Hurt, Dec 06 2013 *) LinearRecurrence[{1,1,3,1,-1,-1},{1,1,1,4,9,16},40] (* Harvey P. Dale, Jan 14 2015 *) CoefficientList[Series[(1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
-
PARI
my(x='x+O('x^50)); Vec((1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ G. C. Greubel, Apr 29 2017
Formula
a(n) = A000930(n)^2.
a(n) = a(n-1) + a(n-3) + 2*Sum_{r=3..n} ( A000931(r+2)*a(n-r) ). - Michael A. Allen, Sep 24 2024
Comments