cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233541 a(n) = sigma(n) + phi(n) + d(n).

Original entry on oeis.org

3, 6, 8, 12, 12, 18, 16, 23, 22, 26, 24, 38, 28, 34, 36, 44, 36, 51, 40, 56, 48, 50, 48, 76, 54, 58, 62, 74, 60, 88, 64, 85, 72, 74, 76, 112, 76, 82, 84, 114, 84, 116, 88, 110, 108, 98, 96, 150, 102, 119, 108, 128, 108, 146, 116, 152, 120, 122, 120, 196, 124
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 12 2013

Keywords

Comments

a(n) is the sum of the divisors of n plus the number of positive integers less than or equal to n and relatively prime to n plus the number of divisors of n.
If n is a prime, then a(n) = A064840(n). If n is a prime or a semiprime, then a(n) = 2(d(n) + n - 1).

Examples

			a(6) = 18; sigma(6) + phi(6) + d(6) = 12 + 2 + 4 = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A233541:=n->sigma(n) + phi(n) + tau(n); seq(A233541(n), n=1..100);
  • Mathematica
    Table[DivisorSigma[0,n] + DivisorSigma[1,n] + EulerPhi[n], {n,100}]
  • PARI
    a(n) = sigma(n) + eulerphi(n) + numdiv(n); \\ Michel Marcus, Dec 07 2016

Formula

a(n) = A000203(n) + A000010(n) + A000005(n).
Dirichlet g.f.: (zeta(s)^3 + zeta(s-1)*zeta(s)^2 + zeta(s-1))/zeta(s). - Ilya Gutkovskiy, Dec 07 2016