A234297
Squares t^2 = (p+q+r)/3 which are the arithmetic mean of three consecutive primes such that p < t^2 < q < r.
Original entry on oeis.org
47961, 123201, 131769, 826281, 870489, 2486929, 3294225, 5239521, 5294601, 5774409, 6215049, 6335289, 6848689, 9308601, 10634121, 16072081, 17164449, 17732521, 18896409, 19298449, 22667121, 24413481, 25391521, 25836889, 30769209, 32569849, 33535681
Offset: 1
47961 is in the sequence because 47961 = 219^2 = (47951+47963+47969)/3, the arithmetic mean of three consecutive primes.
131769 is in the sequence because 131769 = 363^2 = (131759+131771+131777)/3, the arithmetic mean of three consecutive primes.
Cf.
A062703 (squares: sum of two consecutive primes).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of three consecutive primes).
-
with(numtheory):KD := proc() local a,b,d,e,f; a:=n^2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=(b+d+e)/3; if a=f then RETURN (a); fi; end: seq(KD(), n=2..10000);
-
amQ[{a_,b_,c_}]:=Module[{m=Mean[{a,b,c}]},IntegerQ[Sqrt[m]]&&aHarvey P. Dale, Mar 14 2014 *)
-
list(lim)=my(v=List(),p=2,q=3,t); forprime(r=5, nextprime(nextprime(lim+1)+1), t=(p+q+r)/3; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q;q=r); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014
A234358
Cubes t^3 = (p+q+r+s)/4 which are the arithmetic mean of four consecutive primes such that p < t^3 < q < r < s.
Original entry on oeis.org
25934336, 194104539, 320013504, 332812557, 428661064, 8072216216, 8640364608, 11239424000, 16290480375, 17738739712, 26730899000, 44136677304, 46850670125, 68117264704, 114366627864, 119168121961
Offset: 1
25934336 is in the sequence because 25934336 = 296^3 = (25934303+25934341+25934347+25934353)/4, the arithmetic mean of four consecutive primes.
320013504 is in the sequence because 320013504 = 684^3 = (320013479+320013509+320013511+320013517)/4, the arithmetic mean of four consecutive primes.
Cf.
A062703 (squares: sum of two consecutive primes).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of two consecutive primes).
Cf.
A234256 (cubes: arithmetic mean of three consecutive primes).
-
KD := proc() local a,b,d,e,f,g; a:=n^3; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=nextprime(e); g:=(b+d+e+f)/4; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000);
A234256
Cubes t^3 = (p+q+r)/3 which are the arithmetic mean of three consecutive primes such that p < t^3 < q < r.
Original entry on oeis.org
5735339, 10503459, 73560059, 253636137, 393832837, 761048497, 791453125, 1064332261, 1829276567, 2014698447, 2487813875, 2893640625, 4533086375, 7845011803, 14437662875, 45998156287, 55611739513, 62429032063, 63378025803, 72877493233, 87115050737, 104154702625
Offset: 1
5735339 is in the sequence because 5735339 = 179^3 = (5735291+5735357+5735369)/3, the arithmetic mean of three consecutive primes.
10503459 is in the sequence because 10503459 = 219^3 = (10503443+10503461+10503473)/3, the arithmetic mean of three consecutive primes.
Cf.
A062703 (squares: sum of two consecutive primes).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of two consecutive primes).
-
with(numtheory):KD := proc() local a,b,d,e,f; a:=n^3; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=(b+d+e)/3; if a=f then RETURN (a); fi; end: seq(KD(), n=2..10000);
-
list(lim)=my(v=List(), p=2, q=3, t); forprime(r=5, nextprime(nextprime(lim\3+1)+1), t=(p+q+r)/3; if(denominator(t)==1 && ispower(t,3) && t < q, listput(v, t)); p=q; q=r); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014
A234318
Squares t^2 = (p+q+r+s)/4 which are the arithmetic mean of four consecutive primes such that p < t^2 < q < r < s.
Original entry on oeis.org
15876, 35721, 59049, 65025, 488601, 828100, 1144900, 3857296, 4822416, 4901796, 5107600, 5322249, 5856400, 6100900, 6760000, 10536516, 11716929, 12503296, 13468900, 14197824, 14638276, 15163236, 18748900, 21455424, 22127616, 22638564, 24049216, 24098281, 24108100
Offset: 1
15876 is in the sequence because 15876 = 126^2 = (15859+15877+15881+15887)/4, the arithmetic mean of four consecutive primes.
35721 is in the sequence because 35721 = 189^2 = (35677+35729+35731+35747)/4, the arithmetic mean of four consecutive primes.
Cf.
A062703 (squares: sum of two consecutive primes).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of three consecutive primes).
Cf.
A234297 (squares: arithmetic mean of three consecutive primes).
-
KD := proc() local a,b,d,e,f,g; a:=n^2;b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=nextprime(e); g:=(b+d+e+f)/4; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000);
-
fcpQ[{a_,b_,c_,d_}]:=Module[{m=Mean[{a,b,c,d}]},IntegerQ[ Sqrt[ m]] && a< m< b]; Mean/@Select[Partition[Prime[Range[1600000]],4,1],fcpQ] (* Harvey P. Dale, Apr 24 2017 *)
-
list(lim)=my(v=List(), p=2, q=3, r=5, t); forprime(s=7, nextprime(nextprime(lim+1)+1), t=(p+q+r+s)/4; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q; q=r; r=s); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014
A234531
Pentagonal numbers which are the arithmetic mean of two consecutive primes.
Original entry on oeis.org
12, 176, 376, 532, 590, 3015, 4510, 4676, 7315, 7526, 7957, 8855, 12650, 15555, 17120, 19437, 20126, 22265, 25676, 29330, 30175, 40755, 48510, 54626, 78547, 82017, 91390, 97410, 101270, 102051, 102835, 105205
Offset: 1
376 is in the sequence because 376 = 16*(3*16 - 1)/2 = (373 + 379)/2, the arithmetic mean of two consecutive primes.
532 is in the sequence because 532 = 19*(3*19 - 1)/2 = (523 + 541)/2, the arithmetic mean of two consecutive primes.
Cf.
A000326 (pentagonal numbers: n * (3 * n - 1 ) / 2).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of three consecutive primes).
-
KD := proc() local a,b,d,g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(b); g:=(b+d)/2; if a=g then RETURN (a); fi; end: seq(KD(), n = 2..500);
-
Select[PolygonalNumber[5,Range[300]],!PrimeQ[#]&==(NextPrime[ #]+ NextPrime[ #,-1])/2&] (* Harvey P. Dale, Dec 26 2022 *)
-
lista(nn) = for (n=1, nn, pn = n*(3*n-1)/2; if (pn > 2, precp = precprime(pn-1); if (pn == (precp + nextprime(precp+1))/2, print1(pn, ", ")))) \\ Michel Marcus, Dec 30 2013
A234532
Pentagonal numbers penta(n) = (p + q + r)/3 which are the arithmetic mean of three consecutive primes such that p < penta(n) < q < r.
Original entry on oeis.org
9087, 29751, 291501, 602617, 1505505, 1778337, 1941997, 2137857, 3032415, 4629695, 5016947, 5038917, 7837551, 8030737, 9328807, 11935651, 19158427, 35616757, 40964001, 41073817, 42594697, 44289817, 56141827, 59267551
Offset: 1
9087 is in the sequence because 9087 = 78 *(3*78 - 1)/2 = (9067 + 9091 + 9103)/3, the arithmetic mean of three consecutive primes.
29751 is in the sequence because 29751 = 141*(3*141 - 1)/2 = (29741 + 29753 + 29759)/3, the arithmetic mean of three consecutive primes.
Cf.
A000326 (pentagonal numbers: n * (3*n - 1)/2).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of three consecutive primes).
-
KD := proc() local a,b,d,e,g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); g:=(b+d+e)/3; if a=g then RETURN (a); fi; end: seq(KD(), n=2..10000);
A234539
Pentagonal numbers P = (p+q+r+s)/4 which are the arithmetic mean of four consecutive primes such that p < P < q < r < s.
Original entry on oeis.org
852, 172212, 272001, 341055, 777240, 1451892, 1710402, 2361910, 2922526, 3950382, 4794522, 5414050, 6272015, 7989142, 10580176, 10780301, 11325882, 12173777, 12483395, 14432055, 14665630, 15890910, 16581775, 16962972, 17124772
Offset: 1
852 is in the sequence because 852 = 24*(3*24-1)/2 = (839 + 853 + 857 + 859)/4, the arithmetic mean of four consecutive primes.
172212 is in the sequence because 172212 = 339*(3*339-1)/2 = (172199 +172213+ 172217 + 172219)/4, the arithmetic mean of four consecutive primes.
Cf.
A000326 (pentagonal numbers: n*(3*n-1)/2).
Cf.
A069495 (squares: arithmetic mean of two consecutive primes).
Cf.
A234240 (cubes: arithmetic mean of three consecutive primes).
-
KD := proc() local a,b,d,e,f,g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=nextprime(e); g:=(b+d+e+f)/4; if a=g then RETURN (a); fi; end: seq(KD(), n=2..5000);
-
Mean/@Select[Partition[Prime[Range[2*10^6]],4,1],With[{m=Mean[#]},IntegerQ[(1+Sqrt[1+24m])/6]&[[1]]Harvey P. Dale, May 12 2025 *)
Showing 1-7 of 7 results.
Comments