A095839 a(n) = ((2*n)!/(n!*2^(n-1)))*Integral_{x=1/2..1} (sqrt(1-x^2)/x)^(2*n) dx.
1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..347
Programs
-
Maple
A095839 := proc(n) local k; (4^k-2)/2/(2*k-1) ; add(%*(-1)^k*binomial(n,k),k=0..n) ; %*(-1)^n*(2*n)!/n!/2^(n-1) ; end proc: # R. J. Mathar, Feb 13 2014
-
Mathematica
f[n_] := Numerator[ Integrate[(Sqrt[1 - x^2]/x)^(2n), {x, 1/2, 1}]*(2n)!/(n!2^(n + 1)!)]; Table[ f[n], {n, 0, 11}] (* Robert G. Wilson v *) f[n_] := Numerator[2^(-2 - Gamma[2 + n])*3^(1 + n)*(2*n)!* Hypergeometric2F1Regularized[1, 1/2 + n, 2 + n, -3]]; Table[f[n], {n, 0, 11}] (* Eric W. Weisstein, Nov 19 2005 *)
-
PARI
{a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 22 2013
Formula
D-finite with a(n) +(-4*n+9)*a(n-1) -6*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 13 2014
E.g.f.: (2-sqrt(1-6*x))/(1+2*x). Recurrence follows from the d.e. (12*x^2+4*x-1)*y''+(30*x-1)*y'+6*y=0 satisfied by this. - Robert Israel, May 08 2018
a(n) ~ 2^(n-5/2) * 3^(n+1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
Extensions
a(8)-a(11) from Robert G. Wilson v, Nov 18 2005
Definition corrected by Robert Israel, May 08 2018
Comments