cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234525 Binomial(10*n+2,n)/(5*n+1).

Original entry on oeis.org

1, 2, 21, 310, 5330, 99960, 1983049, 40919714, 869304150, 18885977110, 417663940540, 9371084905962, 212791660837756, 4880918206648000, 112925143575796455, 2632162372046272660, 61752662230350642670, 1457074607325333325524
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=2.

Crossrefs

Programs

  • Magma
    [Binomial(10*n+2, n)/(5*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
  • Mathematica
    Table[Binomial[10 n + 2, n]/(5 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
  • PARI
    a(n) = binomial(10*n+2,n)/(5*n+1);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^5)^2+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=2.
a(n) = 2*binomial(10n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]