A234575 Triangle T(n, k) read by rows: T(n, k) = floor(n/k) + n mod k.
1, 2, 1, 3, 2, 1, 4, 2, 2, 1, 5, 3, 3, 2, 1, 6, 3, 2, 3, 2, 1, 7, 4, 3, 4, 3, 2, 1, 8, 4, 4, 2, 4, 3, 2, 1, 9, 5, 3, 3, 5, 4, 3, 2, 1, 10, 5, 4, 4, 2, 5, 4, 3, 2, 1, 11, 6, 5, 5, 3, 6, 5, 4, 3, 2, 1, 12, 6, 4, 3, 4, 2, 6, 5, 4, 3, 2, 1, 13, 7, 5, 4, 5, 3, 7, 6, 5
Offset: 1
Examples
Triangle begins: 1 2 1 3 2 1 4 2 2 1 5 3 3 2 1 6 3 2 3 2 1 7 4 3 4 3 2 1 8 4 4 2 4 3 2 1 9 5 3 3 5 4 3 2 1 10 5 4 4 2 5 4 3 2 1 11 6 5 5 3 6 5 4 3 2 1 12 6 4 3 4 2 6 5 4 3 2 1 13 7 5 4 5 3 7 6 5 4 3 2 1 14 7 6 5 6 4 2 7 6 5 4 3 2 1 15 8 5 6 3 5 3 8 7 6 5 4 3 2 1
Links
- Antti Karttunen, Rows n = 1..144 of triangular table, flattened
Programs
-
Haskell
a234575 n k = a234575_tabl !! (n-1) !! (k-1) a234575_row n = a234575_tabl !! (n-1) a234575_tabl = zipWith (zipWith (+)) a048158_tabl a010766_tabl -- Reinhard Zumkeller, Apr 29 2015
-
Mathematica
With[{rows=10},Table[Floor[n/k]+Mod[n,k],{n,rows},{k,n}]] (* Paolo Xausa, Sep 26 2023 *)
-
Python
for n in range(1, 19): for k in range(1, n+1): c = n//k + n%k print('%2d' % c, end=' ') print()
-
Python
def T(n, k) -> int: return n - (k - 1) * (n // k) for n in range(1,16): print([T(n, k) for k in range(1,n+1)]) # Peter Luschny, Jun 01 2025
-
Scheme
;; MIT/GNU Scheme (define (A234575bi n k) (+ (floor->exact (/ n k)) (modulo n k))) (define (A234575 n) (A234575bi (A002024 n) (A002260 n))) ;; Antti Karttunen, Dec 29 2013
Formula
G.f. of the k-th column: x^k*((Sum_{i=0..k-1} x^i) - (k-1)*x^k)/((1 - x)^2*Sum_{i=0..k-1} x^i). - Stefano Spezia, May 08 2024
T(n, k) = n - (k - 1) * floor(n/k). - Peter Luschny, Jun 01 2025