A357190 a(n) is the least prime p such that A234575(p, A007953(p)) is the n-th power of a prime.
17, 13, 131, 107, 383, 613, 43607, 1021, 334403, 26099, 40637, 138967, 212867, 360049, 502210997, 2227399, 5682166613, 7339303, 13630913, 35650627, 92273957, 142605709, 4424729404133, 671087119, 42364430471219, 2684353351, 404156666702231, 10737417109, 4872756792902003
Offset: 1
Examples
a(3) = 131 because 131 is prime, has sum of digits 5, 131 = 26*5 + 1 and 26 + 1 = 27 = 3^3 where 3 is prime; and 131 is the least prime that works.
Links
- Robert Israel, Table of n, a(n) for n = 1..100
Programs
-
Maple
g:= proc(t,M) local s,q,r,n; for s from 2 to 9*M do for r from s-1 to 1 by -1 do q:= t-r; n:= q*s+r; if convert(convert(n,base,10),`+`) = s and isprime(n) then return n fi; if n >= 10^M then return -1 fi; od od; -1 end proc: G:= proc(m) local i,M,found,v,r; found:= false; r:= infinity; for M from 3 while not found do for i from 1 while ithprime(i)^m < 10^M do v:= g(ithprime(i)^m, M); if v > 0 then found:= true; r:= min(v,r) fi od od: r end proc: map(G, [$1..30]);
Comments