A234645 Sum of the divisors of n^3+1.
1, 3, 13, 56, 84, 312, 256, 660, 800, 1332, 1344, 3458, 2240, 3792, 4836, 6572, 4356, 13440, 6160, 16800, 13312, 15192, 11136, 35685, 19840, 25284, 30976, 42560, 22740, 63648, 30464, 71820, 51792, 65664, 53952, 111440, 52136, 84480, 99008, 133560, 75264
Offset: 0
Examples
a(4) = 84 because 4^3+1 = 65 and the sum of the 4 divisors {1, 5, 13, 65} is 84.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[SumOfDivisors(n^3+1): n in [0..50]];
-
Mathematica
Table[Total[Divisors[n^3 + 1]], {n, 0, 50}] DivisorSigma[1,Range[0,40]^3+1] (* Harvey P. Dale, Jul 27 2021 *)
-
PARI
a(n) = sigma(n^3+1); \\ Michel Marcus, Jun 19 2015
Formula
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.449926279... . - Amiram Eldar, Dec 09 2024