A234810 Primes p such that p^2 divides 14^(p-1) - 1.
29, 353, 7596952219
Offset: 1
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Petr Ležák, Solutions of equation a^(p-1) mod p^2 = 1, p is prime
- P. L. Montgomery, New solutions of a^p-1 == 1 (mod p^2), Math. Comp., 61 (203), 361-363
Crossrefs
Cf. A001220.
Programs
-
Mathematica
Select[Prime[Range[200]], Divisible[14^(# - 1) - 1, #^2] &] (* Alonso del Arte, Apr 20 2014 *) Select[Prime[Range[200]],PowerMod[14,#-1,#^2]==1&] (* The program generates the first two terms of the sequence. To generate the third term, increase the Range constant to 351*10^5, but the program will take a long time to run. *) (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
N=10^9; default(primelimit, N); forprime(n=2, N, if(Mod(14, n^2)^(n-1)==1, print1(n, ", ")));
Comments