cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2014

Keywords

Examples

			Triangle begins:
     1,
     2,    1,
     5,    6,     2,
    14,   28,    20,     5,
    42,  120,   135,    70,    14,
   132,  495,   770,   616,   252,    42,
   429, 2002,  4004,  4368,  2730,   924,  132,
  1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
  ...
		

Crossrefs

A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.

Programs

  • Haskell
    a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
    a234950_row n = map (a234950 n) [0..n]
    a234950_tabl = map a234950_row [0..]
    -- Reinhard Zumkeller, Jan 12 2014
    
  • Maple
    T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)):
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
  • Mathematica
    T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
  • PARI
    T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Sep 06 2015

Formula

G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018