A235601 Smallest number m such that repeated application of A235600 takes n steps to reach 1, where A235600(k) = k/A007953(k) if the digital sum A007953(k) divides k, A235600(k) = k otherwise.
1, 2, 12, 108, 1944, 52488, 1102248, 44641044, 2008846980, 108477736920, 6508664215200, 421761441144960, 22142475660110400, 1793540528468942400, 160701231350817239040, 15909421903730906664960, 1874419162475932276162560
Offset: 0
Examples
a(4) = 1944: 1944 ->1944/18 = 108 -> 108/9 = 12 -> 12/3 = 4 -> 4/4 = 1 in 4 steps.
Links
- Hans Havermann and Ray Chandler, Table of n, a(n) for n = 0..440 [First 100 terms were computed by David W. Wilson]
- David W. Wilson, Ray Chandler, Alonso Del Arte, M. F. Hasler, Hans Havermann, Alex Meiburg, N. J. A. Sloane, Hugo Van Der Sanden, and Allan Wechsler, As much as I hate "base" sequences..., Copies of various posts to the Sequence Fans Mailing List, Circa January 2014. Assembled by _N. J. A. Sloane_, Dec 23 2024
Programs
-
Mathematica
s={1}; Print[s[[1]]]; Do[t={}; Do[v=s[[k]]; u={}; Do[If[Total[IntegerDigits[c*v]]==c, AppendTo[u,c*v]], {c,2,7000}]; t=Join[t,u], {k,Length[s]}]; s=Sort[t]; Print[s[[1]]], {440}] (* Hans Havermann, Jan 21 2014 *)
Extensions
a(8) from Hans Havermann, Jan 19 2014
a(9)-a(100) from David W. Wilson, Jan 21 2014
a(101)-a(440) from Hans Havermann and Ray Chandler, Jan 21 2014
Comments