cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A031955 Numbers with exactly two distinct base-10 digits.

Original entry on oeis.org

10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 110, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166
Offset: 1

Views

Author

Keywords

Comments

The three-digit terms are given by A210666(1,...,244). For numbers with exactly two distinct (but unspecified) digits in other bases, see A031948-A031954. For numbers made of two *given* digits, see A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). - M. F. Hasler, Apr 04 2015
A235154 is a subsequence. - Altug Alkan, Dec 03 2015
A235717 is a subsequence. - Robert Israel, Dec 03 2015

Crossrefs

Programs

  • Haskell
    a031955 n = a031955_list !! (n-1)
    a031955_list = filter ((== 2) . a043537) [0..]
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    M:= 5: # to get all terms < 10^M
    sort([seq(seq(seq(seq(add(10^(m-j)*`if`(member(j,S2),d2,d1),j=1..m)  ,
      S2 = combinat:-powerset({$2..m}) minus {{}}),
      d2 = {$0..9} minus {d1}), d1 = 1..9), m=2..M)]); # Robert Israel, Dec 03 2015
  • Mathematica
    Select[Range@ 166, Length@ Union@ IntegerDigits@ # == 2 &] (* Michael De Vlieger, Dec 03 2015 *)
  • PARI
    is_A031955(n)=#Set(digits(n))==2 \\ M. F. Hasler, Apr 04 2015
    
  • Python
    def ok(n): return len(set(str(n))) == 2
    print(list(filter(ok, range(167)))) # Michael S. Branicky, Oct 12 2021

Formula

A043537(a(n)) = 2. - Reinhard Zumkeller, Dec 03 2009

Extensions

Name edited by Charles R Greathouse IV, Feb 13 2017

A225218 Square numbers containing all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Original entry on oeis.org

1026753849, 1042385796, 1098524736, 1237069584, 1248703569, 1278563049, 1285437609, 1382054976, 1436789025, 1503267984, 1532487609, 1547320896, 1643897025, 1827049536, 1927385604, 1937408256, 2076351489, 2081549376, 2170348569, 2386517904, 2431870596
Offset: 1

Views

Author

Reiner Moewald, May 02 2013

Keywords

Comments

The first term having a repeated digit is 10057482369. - Colin Barker, Jan 15 2014

Examples

			1026753849 is in the sequence because 1026753849 = 32043^2 and 1026753849 contains all ten digits 0, ..., 9.
		

Crossrefs

Supersequence of A036745.

Programs

  • Mathematica
    Select[#^2 &[Range[1000000]], Length[Union[IntegerDigits[#]]] == 10 &] (* Geoffrey Critzer, Jan 04 2015 *)
  • PARI
    s=[]; for(n=1, 100000, if(#vecsort(eval(Vec(Str(n^2))), , 8)==10, s=concat(s, n^2))); s \\ Colin Barker, Jan 15 2014
    
  • Python
    from itertools import count, islice
    def c(n): return len(set(str(n))) == 10
    def agen(): yield from (k*k for k in count(31622) if c(k*k))
    print(list(islice(agen(), 21))) # Michael S. Branicky, Dec 27 2022

Formula

a(n) = A054038(n)^2. - Colin Barker, Jan 15 2014

A235718 Squares which have one or more occurrences of exactly three different digits.

Original entry on oeis.org

169, 196, 256, 289, 324, 361, 529, 576, 625, 729, 784, 841, 961, 1156, 1225, 1521, 1600, 1681, 2025, 2116, 2209, 2500, 3136, 3364, 3600, 3844, 3969, 4225, 4489, 4624, 4900, 5625, 5776, 5929, 6400, 6561, 6889, 7225, 8100, 8281, 8464, 8836, 9409, 10201, 10404
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 1156.

Examples

			5929 is in the sequence because 5929 = 77^2 and 5929 contains exactly three different digits: 2, 5 and 9.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 200, if(#vecsort(eval(Vec(Str(n^2))),,8)==3, s=concat(s, n^2))); s

Formula

a(n) = A054031(n)^2.

A235724 Squares which have one or more occurrences of exactly nine different digits.

Original entry on oeis.org

102495376, 102576384, 102738496, 104325796, 105637284, 139854276, 152843769, 157326849, 158306724, 158407396, 172843609, 176039824, 176305284, 178035649, 180472356, 183467025, 187635204, 198753604, 208571364, 215384976, 217356049, 218034756, 235714609
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 1005397264.
The smallest penholodigital square is a(6) = A036744(1) = 139854276 and the largest one is a(83) = A036744(30) = 923187456 (see Penguin references). - Bernard Schott, Feb 07 2022

Examples

			102495376 is in the sequence because 102495376 = 10124^2 and 102495376 contains exactly nine different digits: 0, 1, 2, 3, 4, 5, 6, 7 and 9.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 139854276, page 184 and entry 923187456, page 186.

Crossrefs

Cf. A054037.
A036744 is a subsequence.

Programs

  • PARI
    s=[]; for(n=1, 100000, if(#vecsort(eval(Vec(Str(n^2))),,8)==9, s=concat(s, n^2))); s
    
  • Python
    from itertools import count, islice
    def agen(): yield from (r*r for r in count(10**4) if len(set(str(r*r)))==9)
    print(list(islice(agen(), 23))) # Michael S. Branicky, May 24 2022

Formula

a(n) = A054037(n)^2.

A335843 a(n) is the number of n-digit positive integers with exactly two distinct base 10 digits.

Original entry on oeis.org

0, 81, 243, 567, 1215, 2511, 5103, 10287, 20655, 41391, 82863, 165807, 331695, 663471, 1327023, 2654127, 5308335, 10616751, 21233583, 42467247, 84934575, 169869231, 339738543, 679477167, 1358954415, 2717908911, 5435817903, 10871635887, 21743271855, 43486543791
Offset: 1

Views

Author

Stefano Spezia, Jul 18 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A031955.

Examples

			a(1) = 0 since the positive integers must have at least two digits;
a(2) = 81 since #[99] - #[9] - #(11*[9]) = 99 - 9 - 9 = 81;
a(3) = 243 since #[999] - #[99] - #(111*[9]) - #{xyz in N | x,y,z are three different digits with x != 0} = 999 - 99 - 9 - 9*9*8 = 243;
...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2},{0,81},31]
  • PARI
    concat([0],Vec(81*x^2/(1-3*x+2*x^2)+O(x^31)))

Formula

O.g.f.: 81*x^2/(1 - 3*x + 2*x^2).
E.g.f.: 81*(exp(x) - 1)^2/2.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2.
a(n) = 81*(2^(n-1) - 1).
a(n) = 81*A000225(n-1).

Extensions

a(0) removed by Stefano Spezia, Sep 23 2020

A235723 Squares which have one or more occurrences of exactly eight different digits.

Original entry on oeis.org

10278436, 10673289, 10679824, 10837264, 13498276, 13527684, 13675204, 13860729, 13942756, 16378209, 16785409, 17280649, 17430625, 19847025, 20584369, 20738916, 21307456, 21473956, 21743569, 23078416, 23174596, 23970816, 24137569, 24671089, 24870169, 28901376
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 101465329.

Examples

			10278436 is in the sequence because 10278436 = 3206^2 and 10278436 contains exactly eight different digits: 0, 1, 2, 3, 4, 6, 7 and 8.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 10000, if(#vecsort(eval(Vec(Str(n^2))),,8)==8, s=concat(s, n^2))); s

Formula

a(n) = A054036(n)^2.

A235719 Squares which have one or more occurrences of exactly four different digits.

Original entry on oeis.org

1024, 1089, 1296, 1369, 1764, 1849, 1936, 2304, 2401, 2601, 2704, 2809, 2916, 3025, 3249, 3481, 3721, 4096, 4356, 4761, 5041, 5184, 5329, 5476, 6084, 6241, 6724, 7056, 7396, 7569, 7921, 8649, 9025, 9216, 9604, 9801, 10609, 10816, 11025, 11236, 12544, 12996
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 10609.

Examples

			5329 is in the sequence because 5329 = 73^2 and 5329 contains exactly four different digits: 2, 3, 5 and 9.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[150]^2,Length[Union[IntegerDigits[#]]]==4&] (* Harvey P. Dale, May 03 2018 *)
  • PARI
    s=[]; for(n=1, 300, if(#vecsort(eval(Vec(Str(n^2))),,8)==4, s=concat(s, n^2))); s

Formula

a(n) = A054032(n)^2.

A235720 Squares which have one or more occurrences of exactly five different digits.

Original entry on oeis.org

12769, 13456, 13689, 13924, 15376, 15876, 16384, 17689, 17956, 18496, 18769, 20164, 20736, 21609, 21904, 23104, 23409, 23716, 28561, 29584, 30276, 30625, 30976, 31684, 32041, 32761, 34596, 35721, 36481, 37249, 38025, 38416, 39204, 39601, 41209, 43681, 45369
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 100489.

Examples

			30976 is in the sequence because 30976 = 176^2 and 30976 contains exactly five different digits: 0, 3, 6, 7 and 9.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 1200, if(#vecsort(eval(Vec(Str(n^2))),,8)==5, s=concat(s, n^2))); s

Formula

a(n) = A054033(n)^2.

A235721 Squares which have one or more occurrences of exactly six different digits.

Original entry on oeis.org

103684, 104329, 104976, 107584, 123904, 124609, 132496, 134689, 139876, 140625, 157609, 162409, 164025, 170569, 173056, 180625, 195364, 198025, 207936, 209764, 214369, 237169, 254016, 257049, 258064, 259081, 279841, 293764, 310249, 318096, 321489, 326041
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 1028196.

Examples

			124609 is in the sequence because 124609 = 353^2 and 124609 contains exactly six different digits: 0, 1, 2, 4, 6 and 9.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 1200, if(#vecsort(eval(Vec(Str(n^2))),,8)==6, s=concat(s, n^2))); s

Formula

a(n) = A054034(n)^2.

A235722 Squares which have one or more occurrences of exactly seven different digits.

Original entry on oeis.org

1034289, 1046529, 1048576, 1054729, 1056784, 1073296, 1075369, 1085764, 1238769, 1247689, 1354896, 1380625, 1382976, 1432809, 1507984, 1605289, 1607824, 1630729, 1695204, 1708249, 1750329, 1763584, 1803649, 1827904, 1836025, 1890625, 1946025, 1974025
Offset: 1

Views

Author

Colin Barker, Jan 15 2014

Keywords

Comments

The first term having a repeated digit is 10137856.

Examples

			1247689 is in the sequence because 1247689 = 1117^2 and 1247689 contains exactly seven different digits: 1, 2, 4, 6, 7, 8 and 9.
		

Crossrefs

Programs

Formula

a(n) = A054035(n)^2.
Showing 1-10 of 11 results. Next